Full Text:   <259>

Summary:  <80>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-02-01

Received: 2023-06-07

Revision Accepted: 2023-09-24

Crosschecked: 2024-02-01

Cited: 0

Clicked: 453

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Juan-juan Ren

https://orcid.org/0000-0001-9500-452X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.2 P.130-146

http://doi.org/10.1631/jzus.A2300303


Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground


Author(s):  Juanjuan REN, Junhong DU, Kaiyao ZHANG, Bin YAN, Jincheng TIAN

Affiliation(s):  MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu 610031, China; more

Corresponding email(s):   jj.ren@home.swjtu.edu.cn

Key Words:  Slab track, Subgrade frost heave, Transfer relation, Vehicle–, track–, subgrade coupling, Dynamic response


Juanjuan REN, Junhong DU, Kaiyao ZHANG, Bin YAN, Jincheng TIAN. Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground[J]. Journal of Zhejiang University Science A, 2024, 25(2): 130-146.

@article{title="Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground",
author="Juanjuan REN, Junhong DU, Kaiyao ZHANG, Bin YAN, Jincheng TIAN",
journal="Journal of Zhejiang University Science A",
volume="25",
number="2",
pages="130-146",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300303"
}

%0 Journal Article
%T Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground
%A Juanjuan REN
%A Junhong DU
%A Kaiyao ZHANG
%A Bin YAN
%A Jincheng TIAN
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 2
%P 130-146
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300303

TY - JOUR
T1 - Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground
A1 - Juanjuan REN
A1 - Junhong DU
A1 - Kaiyao ZHANG
A1 - Bin YAN
A1 - Jincheng TIAN
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 2
SP - 130
EP - 146
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300303


Abstract: 
subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures. In this study, we used a static model to: (1) investigate track‍–‍subgrade frost heave and develop a dynamic model of vehicle‍–‍track‍–‍subgrade frost heave; (2) explore the transfer relation between subgrade frost heave and track structure deformation; (3) examine the characteristics of interlayer debonding; (4) study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions. A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site. The results show: (i) The position of frost heave significantly affects the transfer of deformation to a slab track. The largest deformation of the track slab, with the amplitude transfer ratio reaching 20%, was recorded when the frost heave occurred near the joint of the base plate. (ii) At the same frost heave amplitude, long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave. In the wavelength range of 10‍–‍30 m, the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz, with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle. (iii) The maximum wheel–rail force occurs when the front bogie passes the frost heave peak, with greater frost heave amplitudes producing greater wheel‍–‍rail force. From these results, we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.

季冻区路基冻胀与无砟轨道变形的映射关系及车辆动力响应

作者:任娟娟1,2,杜俊宏1,2,章恺尧1,2,闫斌3,田晋丞4
机构:1西南交通大学,高速铁路线路工程教育部重点实验室,中国成都,610031;2西南交通大学,土木工程学院,中国成都,610031;3中南大学,土木工程学院,中国长沙,410075;4中国电建集团昆明勘测设计研究院有限公司,机场工程所,中国昆明,650051
目的:季冻区路基冻胀对高速列车运行的安全性和舒适性以及轨道结构的服役性能具有较大影响。基于实测数据,本文旨在建立轨道-路基冻胀空间耦合静力学模型和车辆-轨道-路基冻胀空间耦合动力学模型,并采用傅里叶级数进行冻胀波形拟合,进一步探究季冻区高速铁路路基冻胀与轨道结构变形映射关系、层间离缝特征及路基冻胀对车辆动力响应的影响,以期为季节性冻土路基冻胀问题的防治及研究提供依据。
创新点:1.采用傅立叶级数对实测数据进行拟合,并将其作为有限元模型的输入边界条件;2.提出将静力模型的计算结果作为动力模型初始条件的计算方法,简化计算过程,提高计算效率;3.从时域和频域探讨路基冻胀波长和幅值对车体振动加速度和轮轨力的影响。
方法:1.采用傅立叶级数对现场实测数据进行拟合,并将其作为有限元模型的输入边界条件(公式(4));2.通过建立路基冻胀-无砟轨道结构静力与动力模型,分析轨道结构层变形映射关系及车辆动力响应。
结论:1.冻胀位置对轨道垂向上拱变形及层间离缝影响较大;2.轨道结构各层最大垂向变形随冻胀幅值的增大而增大,且几乎呈线性变化;3.路基冻胀波长越大,对车体垂直加速度的影响越小;4.当冻胀波长一定时,车体垂向加速度随冻胀幅值的增加呈非线性增加,且增加幅度逐渐变小。

关键词:无砟轨道;路基冻胀;映射关系;车辆-轨道-路基耦合;动力响应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AuerschL, 2015. Excitation of ground vibration due to the passage of trains over a track with trackbed irregularities and a varying support stiffness. Vehicle System Dynamics, 53(1):1-29.

[2]CaiXP, LiangYK, XinT, et al., 2019. Assessing the effects of subgrade frost heave on vehicle dynamic behaviors on high-speed railway. Cold Regions Science and Technology, 158:95-105.

[3]CaiXP, ZhangQ, ZhangYR, et al., 2021. Deformation law and control limit of CRTSIII slab track under subgrade frost heave. Applied Sciences, 11(8):3520.

[4]ChenZW, ZhaiWM, CaiCB, et al., 2015. Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction. Science China Technological Sciences, 58(2):202-210.

[5]GaoL, ZhaoWQ, HouBW, et al., 2020. Analysis of influencing mechanism of subgrade frost heave on vehicle-track dynamic system. Applied Sciences, 10(22):8097.

[6]GouHY, RanZW, YangLC, et al., 2019. Mapping vertical bridge deformations to track geometry for high-speed railway. Steel and Composite Structures, 32(4):467-478.

[7]GuoLW, 2017. Study on Dynamic Behavior of Vehicle-Slab Track System under the Subgrade Frost Heaving in Cold Region. MS Thesis, Beijing Jiaotong University, Beijing, China(in Chinese).

[8]HasanN, 2014. Maximum curving speed. Journal of Transportation Engineering, 140(4):04013023.

[9]HuntH, 2005. Modelling of rail roughness for the evaluation of vibration-isolation measures. Proceedings of the 12th International Congress on Sound and Vibration, p.11-14.

[10]HuntHEM, 2007. Types of rail roughness and the selection of vibration isolation measures. Proceedings of the 9th International Workshop on Railway Noise, p.341-347.

[11]HwangSH, KimS, LeeKC, et al., 2018. Effects of long-wavelength track irregularities due to thermal deformations of railway bridge on dynamic response of running train. Applied Sciences, 8(12):2549.

[12]JiangHG, LiXL, XinGF, et al., 2019. Geometry mapping and additional stresses of ballastless track structure caused by subgrade differential settlement under self-weight loads in high-speed railways. Transportation Geotechnics, 18:103-110.

[13]JiangHG, LiYX, WangYJ, et al., 2022. Dynamic performance evaluation of ballastless track in high-speed railways under subgrade differential settlement. Transportation Geotechnics, 33:100721.

[14]KalkerJJ, 1991. Wheel-rail rolling contact theory. Wear, 144(1-2):243-261.

[15]LinZJ, NiuFJ, LiXL, et al., 2018. Characteristics and controlling factors of frost heave in high-speed railway subgrade, Northwest China. Cold Regions Science and Technology, 153:33-44.

[16]LuoB, LaiH, IshikawaT, et al., 2017. Frost heave analysis of ballasted track above box culvert and its influence on train vibration. Sciences in Cold and Arid Regions, 9(3):229-235.

[17]MaFX, XiRJ, XuN, 2016. Analysis of railway subgrade frost heave deformation based on GPS. Geodesy and Geodynamics, 7(2):143-147.

[18]MOR (Ministry of Railways of the People’s Republic of China), 2012. Maintenance Rules for Ballastless Track Lines of High-Speed Railway (Trial Implementation), TG/GW 115–2012. National Standards of the People’s Republic of China(in Chinese).

[19]NiuFJ, ZhengH, LiAY, 2020. The study of frost heave mechanism of high-speed railway foundation by field-monitored data and indoor verification experiment. Acta Geotechnica, 15(3):581-593.

[20]PaixãoA, FortunatoE, CalçadaR, 2015. The effect of differential settlements on the dynamic response of the train–track system: a numerical study. Engineering Structures, 88:216-224.

[21]PolachO, 1999. A fast wheel-rail forces calculation computer code. Vehicle System Dynamics, 33(sup1):728-739.

[22]RenJJ, ZhangKY, ZhengJL, et al., 2022. Railway subgrade thermal-hydro-mechanical behavior and track irregularity under the sunny-shady slopes effect in seasonal frozen regions. Journal of Central South University, 29(11):3793-3810.

[23]RenJJ, ZhangQ, ZhangYC, et al., 2023a. Evaluation of slab track quality indices based on entropy weight-fuzzy analytic hierarchy process. Engineering Failure Analysis, 149:107244.

[24]RenJJ, LiuW, DuW, et al., 2023b. Identification method for subgrade settlement of ballastless track based on vehicle vibration signals and machine learning. Construction and Building Materials, 369:130573.

[25]SharmaSK, SharmaRC, LeeJ, 2021. Effect of rail vehicle–track coupled dynamics on fatigue failure of coil spring in a suspension system. Applied Sciences, 11(6):2650.

[26]SufaatM, AwaludinA, SatyarnoI, et al., 2022. Finite element analysis of CRTS III slab track model. Proceedings of the 5th International Conference on Sustainable Civil Engineering Structures and Construction Materials, p.17-31.

[27]WangQZ, TaiBW, LiuZY, et al., 2015. Study on the sunny-shady slope effect on the subgrade of a high-speed railway in a seasonal frozen region. Sciences in Cold and Arid Regions, 7(5):513-519.

[28]WangZC, SongY, WangJX, 2014. Relation between track irregularity of speed-increased railway and dynamic speed limits through simulation. The Open Mechanical Engineering Journal, 8:197-200.

[29]WuXY, NiuFJ, LinZJ, et al., 2018. Delamination frost heave in embankment of high speed railway in high altitude and seasonal frozen region. Cold Regions Science and Technology, 153:25-32.

[30]YeQZ, LuoQ, FengGS, et al., 2023. Stress distribution in roadbeds of slab tracks with longitudinal discontinuities. Railway Engineering Science, 31(1):61-74.

[31]YeWL, RenJJ, ZhangAA, et al., 2023. Automatic pixel-level crack detection with multi-scale feature fusion for slab tracks. Computer-Aided Civil and Infrastructure Engineering, 38(18):2648-2665.

[32]ZengZP, XiaoYC, WangWD, et al., 2022. Research on dynamic performance of CRTSIII type slab ballastless track under long-term service. Materials, 15(6):2033.

[33]ZhaiWM, SunX, 1994. A detailed model for investigating vertical interaction between railway vehicle and track. Vehicle System Dynamics, 23(sup1):603-615.

[34]ZhaiWM, CaiCB, GuoSZ, 1996. Coupling model of vertical and lateral vehicle/track interactions. Vehicle System Dynamics, 26(1):61-79.

[35]ZhangS, ShengDC, ZhaoGT, et al., 2016. Analysis of frost heave mechanisms in a high-speed railway embankment. Canadian Geotechnical Journal, 53(3):520-529.

[36]ZhangY, SunB, LiP, et al., 2020. Analysis of deformation and temperature characteristics of high-speed railway roadbed in seasonal frozen regions. Soil Mechanics and Foundation Engineering, 57(5):384-393.

[37]ZhangYZ, DuYL, SunBC, 2015. Temperature distribution analysis of high-speed railway roadbed in seasonally frozen regions based on empirical model. Cold Regions Science and Technology, 114:61-72.

[38]ZhouWB, NieLX, JiangLZ, et al., 2020. Mapping relation between pier settlement and rail deformation of unit slab track system. Structures, 27:1066-1074.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE