Full Text:   <2367>

Summary:  <1787>

CLC number: S311

On-line Access: 2014-11-04

Received: 2014-06-05

Revision Accepted: 2014-09-17

Crosschecked: 2014-10-11

Cited: 1

Clicked: 5201

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.11 P.986-996

http://doi.org/10.1631/jzus.B1400157


Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration*


Author(s):  Da Su, Faisal Sultan, Ning-chun Zhao, Bing-ting Lei, Fu-biao Wang, Gang Pan, Fang-min Cheng

Affiliation(s):  . College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   chengfm@zju.edu.cn

Key Words:  Grain position, Minerals, Phytic acid, Rice, Oryza sativa L.


Da Su, Faisal Sultan, Ning-chun Zhao, Bing-ting Lei, Fu-biao Wang, Gang Pan, Fang-min Cheng. Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration[J]. Journal of Zhejiang University Science B, 2014, 15(11): 986-996.

@article{title="Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration",
author="Da Su, Faisal Sultan, Ning-chun Zhao, Bing-ting Lei, Fu-biao Wang, Gang Pan, Fang-min Cheng",
journal="Journal of Zhejiang University Science B",
volume="15",
number="11",
pages="986-996",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400157"
}

%0 Journal Article
%T Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration
%A Da Su
%A Faisal Sultan
%A Ning-chun Zhao
%A Bing-ting Lei
%A Fu-biao Wang
%A Gang Pan
%A Fang-min Cheng
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 11
%P 986-996
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400157

TY - JOUR
T1 - Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration
A1 - Da Su
A1 - Faisal Sultan
A1 - Ning-chun Zhao
A1 - Bing-ting Lei
A1 - Fu-biao Wang
A1 - Gang Pan
A1 - Fang-min Cheng
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 11
SP - 986
EP - 996
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400157


Abstract: 
Six japonica rice genotypes, differing in panicle type, grain density, and phytic acid (PA) content, were applied to investigate the effect of grain position on the concentrations of major mineral nutrients and its relation to PA content and grain weight within a panicle. grain position significantly affected the concentrations of the studied minerals in both the vertical and horizontal axes of a rice panicle. Heavy-weight grains, located on primary rachis and top rachis, generally had higher mineral concentrations, but were lower in PA concentration and molar ratios of PA/Zn, compared with the small-weight grains located on secondary rachis and bottom rachis, regardless of rice genotypes. However, on the basis of six rice genotypes, no significant correlations were found among mineral elements, PA, and grain weight. These results suggested that some desired minerals, like Zn and Fe, and their bioavailability, can be enhanced simultaneously by the modification of panicle patterns, and it will be helpful in the selection of rice genotypes with low PA and high mineral nutrients for further breeding strategy without sacrificing their high yields.

水稻穗内不同粒位间的矿质营养变化差异及其与籽粒植酸含量的关系

阐明水稻穗内不同粒位间的主要矿质营养元素和植酸含量差异、粒位分布特点及其与品种穗型间的联系。 将水稻品种的穗型变化与稻米营养品质结合起来,从水稻穗粒结构角度,对同一稻穗内不同籽粒间的主要矿质营养元素与植酸含量差异、粒位分布特点及其与水稻品种穗型间的相互关系进行了较系统的探讨分析。 以典型的直立穗型和弯穗型粳稻品种为材料,通过对两类水稻品种在相同栽培条件下籽粒矿质营养元素和植酸含量的测定分析,并依据水稻籽粒在稻穗上的着生部位,将同一稻穗内的不同籽粒划分为六个粒位,比较分析了两类品种同一稻穗内不同部位间矿质营养元素和植酸含量的差异变化及其粒位分布特点。 水稻穗型虽然与品种间的籽粒矿质营养元素和植酸含量高低没有直接关系,但对其穗内不同籽粒间的主要矿质营养元素和植酸含量存在着较大影响;与稻穗中下部的弱势粒相比,同一稻穗内着生在稻穗上中部的强势粒通常具有相对较高的锌、铁矿质元素含量,而籽粒植酸含量和植酸/锌(铁)摩尔比则有所降低,稻米营养品质也相对较好;不同矿质营养元素相比,粒位效应对铁矿质营养的影响作用要略大于对钙和锌营养元素含量。
水稻穗型;粒位效应;营养品质;矿质元素;植酸

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Adeyeye, E.I., Arogundade, L.A., Akintayo, E.T., 2000. Calcium, zinc and phytate interrelationship in some foods of major consumption in Nigeria. Food Chem, 71(4):435-441. 


[2] Anandan, A., Rajiv, G., Eswaran, R., 2011. Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J Food Sci, 76(4):H122-H130. 


[3] Calderini, D.F., Ortiz-Monasterio, I., 2003. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci, 43(1):141-151. 


[4] Calderini, D.F., Torresleon, S., Slafer, G.A., 1995. Consequences of wheat breeding on nitrogen and phosphorus yield, grain nitrogen and phosphorus concentration and associated traits. Ann Bot (London), 76(3):315-322. 


[5] Cheng, F.M., Liu, Y., Liu, Z.H., 2007. Positional variation in chalky occurrence within a rice panicle and its relation to grain nutritional quality. Aust J Agric Res, 58(2):95-103. 

[6] Ferguson, E.L., Gibson, R.S., Thompson, L.U., 1988. Phytate, zinc, and calcium contents of 30 East African foods and their calculated phytate:Zn, Ca:phytate and [Ca][phytate]/[Zn] molar ratios. J Food Compos Anal, 1(4):316-325. 


[7] Frank, T., Habernegg, R., Yuan, F.J., 2009. Assessment of the contents of phytic acid and divalent cations in low phytic acid (lpa) mutants of rice and soybean. J Food Compos Anal, 22(4):278-284. 


[8] He, X.H., Sun, Y., Gao, D., 2011. Comparison of agronomic traits between rice landraces and modern varieties at different altitudes in the paddy fields of Yuanyang terrace, Yunnan province. J Resour Ecol, 2(1):46-50. 


[9] Herzog, H., Stamp, P., 1983. Dry matter and nitrogen accumulation in grains at different ear positions in ‘gigas’, semidwarf and normal spring wheats. Euphytica, 32(2):511-520. 


[10] Ishimaru, T., Hirose, T., Matsuda, T., 2005. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.) comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 46(4):620-628. 


[11] Iwai, T., Takahashi, M., Oda, K., 2012. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiol, 160(4):2007-2014. 


[12] Jeng, T.L., Tseng, T.H., Wang, C.S., 2006. Yield and grain uniformity in contrasting rice genotypes suitable for different growth environments. Field Crop Res, 99(1):59-66. 


[13] Jongkaewwattana, S., Geng, S., 1991. Effect of nitrogen and water management on panicle development and milling quality of California rice (Oryza sativa L.). J Agron Crop Sci, 167(1):43-52. 


[14] Kobayasi, K., Horie, Y., Imaki, T., 2002. Relationship between apical dome diameter at panicle initiation and the size of panicle components in rice grown under different nitrogen conditions during the vegetative stage. Plant Prod Sci, 5(1):3-7. 


[15] Liu, Z.H., Cheng, F.M., Zhang, G.P., 2005. Grain phytic acid content as affected by cultivar and environment and its relation to protein content. Food Chem, 89(1):49-52. 


[16] Liu, Z.H., Cheng, F.M., Cheng, W.D., 2005. Positional variations in phytic acid and protein content within a panicle of japonica rice. J Cereal Sci, 41(3):297-303. 


[17] Liu, Z.H., Wang, H.Y., Wang, X.E., 2006. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). J Cereal Sci, 44(2):212-219. 


[18] Lpez Pereira, M., Trpani, N., Sadras, V.O., 2000. Genetic improvement of sunflower in Argentina between 1930 and 1995: Part III. Dry matter partitioning and grain composition. Field Crop Res, 67(3):215-221. 


[19] Matsue, Y., Odahara, K., Hiramatsu, M., 1995. Differences in amylose content, amylographic characteristics and storage proteins of grains on primary and secondary rachis branches in rice (Oryza Sativa). Jpn J Crop Sci, 64(3):601-606. 


[20] McLaughlin, M.J., Parker, D.R., Clarke, J.M., 1999. Metals and micronutrients—food safety issues. Field Crop Res, 60(1-2):143-163. 


[21] Miller, G.A., Youngs, V.L., Oplinger, E.S., 1980. Environmental and cultivar effects on oat phytic acid concentration. Cereal Chem, 57(3):189-191. 

[22] Mohapatra, P.K., Sahu, S.K., 1991. Heterogeneity of primary branch development and spikelet survival in rice panicle in relation to assimilates of primary branches. J Exp Bot, 42(7):871-879. 


[23] Padmajarao, S., 1995. Yield and high density grain as influenced by crop density and N levels in scented rice. Madras Agric J, 82(2):108-112. 

[24] Raboy, V., 2001. Seeds for a better future: ‘low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci, 6(10):458-462. 


[25] Raboy, V., Dickinson, D.B., Below, F.E., 1984. Variation in seed total phosphorus, phytic acid, zinc, calcium, magnesium, and protein among lines of Glycine max and G. sojaCrop Sci, 24(3):431-434. 


[26] Schachtman, D.P., Barker, S.J., 1999. Molecular approaches for increasing the micronutrient density in edible portions of food crops. Field Crops Res, 60(1-2):81-92. 


[27] Simmonds, N.W., 1995. The relation between yield and protein in cereal grain. J Sci Food Agric, 67(3):309-315. 


[28] Thavarajah, D., Thavarajah, P., See, C.T., 2010. Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chem, 122(1):254-259. 


[29] Umeta, M., West, C.E., Fufa, H., 2005. Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. J Food Compos Anal, 18(8):803-817. 


[30] Vasconcelos, M., Datta, K., Oliva, N., 2003. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci, 164(3):371-378. 


[31] Wang, F., Cheng, F.M., Zhang, G.P., 2006. The relationship between grain filling and hormone content as affected by genotype and source-sink relation. Plant Growth Regul, 49(1):1-8. 


[32] Wei, Y.Y., Shohag, M.J., Wang, Y., 2012. Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination. J Agric Food Chem, 60(7):1871-1879. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE