Full Text:   <2884>

Summary:  <2166>

CLC number: U448.25

On-line Access: 2014-10-08

Received: 2014-07-04

Revision Accepted: 2014-09-17

Crosschecked: 2014-09-25

Cited: 3

Clicked: 7579

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.10 P.798-812

http://doi.org/10.1631/jzus.A1400194


A simulation study on the optimal control of buffeting displacement for the Sutong Bidge with multiple tuned mass dampers*


Author(s):  Hao Wang, Tian-you Tao, Huai-yu Cheng, Ai-qun Li

Affiliation(s):  . Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing 210096, China

Corresponding email(s):   wanghao1980@seu.edu.cn

Key Words:  Long-span cable-stayed bridge, Buffeting response, Vibration control, Multiple tuned mass dampers (MTMDs), Control efficiency


Hao Wang, Tian-you Tao, Huai-yu Cheng, Ai-qun Li. A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers[J]. Journal of Zhejiang University Science A, 2014, 15(10): 798-812.

@article{title="A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers",
author="Hao Wang, Tian-you Tao, Huai-yu Cheng, Ai-qun Li",
journal="Journal of Zhejiang University Science A",
volume="15",
number="10",
pages="798-812",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400194"
}

%0 Journal Article
%T A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers
%A Hao Wang
%A Tian-you Tao
%A Huai-yu Cheng
%A Ai-qun Li
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 10
%P 798-812
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400194

TY - JOUR
T1 - A simulation study on the optimal control of buffeting displacement for the Sutong Bridge with multiple tuned mass dampers
A1 - Hao Wang
A1 - Tian-you Tao
A1 - Huai-yu Cheng
A1 - Ai-qun Li
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 10
SP - 798
EP - 812
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400194


Abstract: 
The buffeting of long-span cable-supported bridges under strong winds is one of the key issues in bridge wind engineering. In order to study the effectiveness of the multiple tuned mass dampers (MTMDs) in buffeting control of long-span bridges, the Sutong Cable-stayed Bridge (SCB) with a main span of 1088 m in China is taken as an example in this paper. The spatial finite element model of the SCB is established and the modal analysis is conducted based on ANSYS. After the 3D turbulence wind field of the SCB is simulated using the measured wind parameters, the time-domain buffeting analysis on the SCB is conducted with the aerodynamic self-excited forces included. According to the dynamic characteristics and the time-domain buffeting analysis results of the SCB, the parameter sensitivity analysis on buffeting vibration control with MTMD is conducted in ANSYS. The optimum parameters are then obtained with the construction difficulty and economic factors considered. Results show that the control efficiency is sensitive to the number of the TMD, mass ratio, frequency band-width ratio, and damping ratio. Both the vertical and the lateral vibrations can be effectively controlled when proper design parameters of a MTMD system are used. In addition, the control effect on lateral vibration is better than that on vertical vibration. Results obtained in this study can provide references for anti-wind design and buffeting control of long-span cable-stayed bridges.

基于多重调谐质量阻尼器的苏通大桥抖振位移最优控制的数值模拟

研究目的:为超大跨度斜拉桥抗风设计与抖振控制提供参考。
研究方法:基于ANSYS建立了苏通大桥三维有限元模型,并在MATLAB平台模拟了苏通大桥三维脉动风场。考虑主梁断面气动自激力,进行了苏通大桥抖振时域分析。根据苏通大桥动力特性和抖振时域分析结果,重点分析了多重调谐质量阻尼器(MTMD)用于抖振控制的参数敏感性。考虑MTMD的控制效果、建造费用、施工难度及鲁棒性等因素建立了关于MTMD设计参数的目标函数,并基于一阶优化算法进行目标函数最优解的非线性搜索,据此获得了MTMD在约束条件下的最优设计参数。
重要结论:1. 苏通大桥侧向抖振位移主要由第一阶侧弯振型控制,竖向抖振位移主要由第一阶竖弯振型控制;2. MTMD的控制效果对设计参数的变化十分敏感,其中质量比和频带宽敏感性更强;3. MTMD的最优设计参数可以通过一阶优化算法获得,并可通过零阶优化算法对优化结果进行验证;4. 采用优化后的MTMD设计参数,苏通大桥的抖振响应可以得到明显抑制,且侧向抖振控制效果更加明显。
大跨斜拉桥;抖振响应;振动控制;多重调谐质量阻尼器(MTMD);控制效果;优化算法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abe, M., Fujino, Y., 1994. Dynamic characterization of multiple tuned mass dampers and some design formulas. Earthquake Engineering and Structural Dynamics, 23(8):813-835. 


[2] Agrawal, A.K., Yang, J.N., 2000. Optimal placement of passive dampers on seismic and wind-excited buildings using combinatorial optimization. Journal of Intelligent Material Systems and Structures, 10(12):997-1014. 


[3] Chen, A.R., You, Q.Z., Zhang, X.G., 2005. Aerodynamic problems of a super-long span cable-stayed bridge. , Proceedings IABSE Symposium, International Association for Bridge and Structural Engineering, Zurich, Switzerland, 74-81. :74-81. 

[4] Chen, X.Z., Kareem, A., 2002. Advanced analysis of coupled buffeting response of bridges: a complex modal decomposition approach. Probabilistic Engineering Mechanics, 17(2):201-213. 


[5] Chen, Z.Q., Han, Y., Hua, X.G., 2009. Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan Bridges. Engineering Structures, 31(2):417-431. 


[6] Chan, P.W., Lee, Y.F., 2013. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(7):469-481. 


[7] Den Hartog, J.P., 1956.  Mechanical Vibration. McGraw-Hill,New York :

[8] Deodatis, G., 1996. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, 122(8):778-787. 


[9] Ernst, J.H., 1965. Der e-modul von seilen unter berucksichtigung des durchhanges. Der Bauingenieur, (in German),40(2):52-55. 

[10] Fujino, Y., Abe, M., 1993. Design formulas for tuned mass dampers based on a perturbation technique. Earthquake Engineering and Structural Dynamics, 22(10):833-854. 


[11] Foster, S., Chan, P.W., 2012. Improving the wind and temperature measurements of an airborne meteorological measuring system. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(10):723-746. 


[12] Gu, M., Chen, S.R., Chang, C.C., 2001. Parametric study on multiple tuned mass dampers for buffeting control of Yangpu Bridge. Journal of Wind Engineering and Industrial Aerodynamics, 89(11-12):987-1000. 


[13] Hoang, N., Fujino, Y., Warnitchai, P., 2008. Optimal tuned mass damper for seismic applications and practical design formulas. Engineering Structures, 30(3):707-715. 


[14] Hua, X.G., Chen, Z.Q., Ni, Y.Q., 2007. Flutter analysis of long-span bridges using ANSYS. Wind and Structures, 10(1):61-82. 


[15] Igusa, T., Xu, K., 1994. Vibration control using multiple tuned dampers. Journal of Sound and Vibration, 175(4):491-503. 


[16] Kaimal, J.C., 1972. Spectral characteristics of surface layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417):563-589. 


[17] Kareem, A., Kline, S., 1995. Performance of multiple mass dampers under random loading. Journal of Structural Engineering, 121(2):348-361. 


[18] Li, C.X., 2002. Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF. Earthquake Engineering and Structural Dynamics, 31(4):897-919. 


[19] Marano, G., Greco, R., 2011. Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation. Journal of Vibration and Control, 17(5):679-688. 


[20] Marano, G., Greco, R., Trentadue, F., 2007. Constrained reliability-based optimization of linear tuned mass dampers for seismic control. International Journal of Solids and Structures, 44(22-23):7370-7388. 


[21] Marano, G., Greco, R., Chiaia, B., 2010. A comparison between different optimization criteria for tuned mass dampers design. Journal of Sound and Vibration, 329(23):4880-4890. 


[22] Ministry of Transport of the Peoples Republic of China, 2004.  Wind Resistant Design Specification for Highway Bridges. Standards Press of China,Beijing :

[23] Nguyen, T.H., Saidi, I., Gad, E.F., 2012. Performance of distributed multiple viscoelastic tuned mass dampers for floor vibration applications. Advances in Structural Engineering, 15(3):547-562. 


[24] Panofsky, H.A., McCormick, R.A., 1960. The spectrum of vertical velocity near the surface. Journal of the Royal Metaorological Society, 86(370):546-564. 

[25] Rdinger, F., 2006. Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. Journal of Engineering Mechanics, ASCE, 132(1):46-53. 


[26] Scanlan, R.H., Lin, W.H., 1978. Effects of turbulence on bridge flutter derivatives. Journal of the Engineering Mechanics Division, ASCE, 104(4):719-733. 

[27] Simiu, E., Scanlan, R.H., 1996.  Wind Effects on Structures, 3rd Edition. John Wiley & Sons, Inc.,New York :

[28] Swanson Analysis Systems, 2004. ANSYS Users Manual, Version 8.0, Hoston :

[29] Wang, H., Li, A.Q., Jiao, C.K., 2010. Damper placement for seismic control of super-long-span suspension bridges based on the first-order optimization method. Science China Technological Sciences, 53(7):2008-2014. 


[30] Wang, H., Li, A.Q., Hu, R.M., 2011. Comparison of ambient vibration response of the Runyang Suspension Bridge under skew winds with time-domain numerical predictions. Journal of Bridge Engineering, 16(4):513-526. 


[31] Wang, H., Zong, Z.H., Li, A.Q., 2012. Digital simulation of 3D turbulence wind field of Sutong Bridge based on measured wind spectra. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(2):91-104. 


[32] Wang, H., Hu, R.M., Xie, J., 2013. Comparative study on buffeting performance of Sutong Bridge based on design and measured spectrum. Journal of Bridge Engineering, 18(7):587-600. 


[33] Wang, H., Li, A.Q., Niu, J., 2013. Long-term monitoring of wind characteristics at Sutong Bridge site. Journal of Wind Engineering and Industrial Aerodynamics, 115:39-47. 


[34] Xing, C.X., Wang, H., Li, A.Q., 2014. Study on wind-induced vibration control of a long-span cable-stayed bridge using TMD-type counterweight. Journal of Bridge Engineering, 19(1):141-148. 


[35] Xu, Y.L., Sun, D.K., Ko, J.M., 1998. Buffeting analysis of a long span bridges: a new algorithm. Computers and Structures, 68(4):303-313. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE