Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Series transformer based diode-bridge-type solid state fault current limiter

Abstract: We propose a novel series transformer based diode-bridge-type solid state fault current limiter (SSFCL). To control the fault current, a series RLC branch is connected to the secondary side of an isolation series transformer. Based on this RLC branch, two current limiting modes are created. In the first mode, R and C are bypassed via a paralleled power electronic switch (insulated-gate bipolar transistor, IGBT) and L remains connected to the secondary side of the transformer as a DC reactor. In the second mode, the series reactor impedance is not enough to limit the fault current. In this case, the fault current can be controlled by selecting a proper on-off duration of the parallel IGBT, across the series damping resistor (R) and capacitor, which inserts high impedance into the line to limit the fault current. Then, by controlling the magnitude of the DC reactor current, the fault current is reduced and the voltage of the point of common coupling (PCC) is kept at an acceptable level. In addition, in the new SSFCL, the series RC branch, connected in parallel with the IGBT, serves as a snubber circuit for decreasing the transient recovery voltage (TRV) of the IGBT during on-off states. Therefore, the power quality indices can be improved. The measurement results of a built prototype are presented to support the simulation and theoretical studies. The proposed SSFCL can limit the fault current without any delay and successfully smooth the fault current waveform.

Key words: Solid state fault current limiter (SSFCL), Power quality, Voltage sag, Point of common coupling (PCC), Isolation transformer

Chinese Summary  <30> 基于级联变压器的二极管桥式固态故障电流限制器

目的:为控制故障电流,提出一种新型基于级联变压器的二极管桥式固态故障电流限制器(SSFCL)。
创新点:所描述的SSFCL具有简单且易用的结构,能够将故障电流幅度限制于安全范围内。并能减少谐波畸变与开关电压过冲,调控公共耦合点电压。
方法:将一串联RLC支路连接于隔离串联变压器的次级端,针对此RLC支路,提出两种限流模式。(1)放电模式:电阻R与电容C被并联的功率电子开关(IGBT)旁路,而电感L仍与变压器次级端相联,从而构成直流电抗器。(2)充电模式:若串联电抗器阻抗不足以限制故障电流,可以通过选择恰当的并联IGBT开关持续时间(on-off duration),将高阻抗的串联电阻R和电容C插入电路,从而限制故障电流。
结论:通过控制直流电抗器电流幅度,可以降低故障电流并将公共耦合点(PCC)的电位限制于合理水平。此外,在本文所述的新型SSFCL中,与IGBT并联的RC支路可作为缓冲电路用于降低开关状态下IGBT的瞬态恢复电压(TRV)。因此,SSFCL可以提升电能质量。本文还给出了在已有的原型系统上的实验测量结果以支持理论和仿真研究。所述的SSFCL可以无延迟地限制故障电流并有效平滑故障电流波形。

关键词组:固态故障电流限制器(SSFCL);电能质量;电压暂降;公共耦合点;隔离变压器


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Hamid@Radmanesh<hamid.nsa@gmail.com>

2015-05-27 18:38:38

Dear Dr.Editor,
I am Dr.Hamid Radmanesh the second author of this paper. Would you please replace my second affiliation with this affiliation "Aeronautical University of Science and Technology, Tehran, Iran".
I am waiting for your response.
Best Regards,
Radmanesh, PhD

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1400428

CLC number:

TM471

Download Full Text:

Click Here

Downloaded:

2947

Download summary:

<Click Here> 

Downloaded:

2135

Clicked:

8028

Cited:

1

On-line Access:

2015-09-06

Received:

2014-12-15

Revision Accepted:

2015-04-16

Crosschecked:

2015-08-07

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE