Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Resampling methods for particle filtering: identical distribution, a new method, and comparable study

Abstract: Resampling is a critical procedure that is of both theoretical and practical significance for efficient implementation of the particle filter. To gain an insight of the resampling process and the filter, this paper contributes in three further respects as a sequel to the tutorial (Li et al., 2015). First, identical distribution (ID) is established as a general principle for the resampling design, which requires the distribution of particles before and after resampling to be statistically identical. Three consistent metrics including the (symmetrical) Kullback-Leibler divergence, Kolmogorov-Smirnov statistic, and the sampling variance are introduced for assessment of the ID attribute of resampling, and a corresponding, qualitative ID analysis of representative resampling methods is given. Second, a novel resampling scheme that obtains the optimal ID attribute in the sense of minimum sampling variance is proposed. Third, more than a dozen typical resampling methods are compared via simulations in terms of sample size variation, sampling variance, computing speed, and estimation accuracy. These form a more comprehensive understanding of the algorithm, providing solid guidelines for either selection of existing resampling methods or new implementations.

Key words: Particle filter, Resampling, Kullback-Leibler divergence, Kolmogorov-Smirnov statistic

Chinese Summary  <215> ç²’å­æ»¤æ³¢é‡é‡‡æ ·ï¼šåŒåˆ†å¸ƒåŽŸåˆ™ã€ä¸€ç§æ–°æ–¹æ³•ä»¥åŠç»¼åˆå¯¹æ¯”

目的:é‡é‡‡æ ·æ–¹æ³•æ˜¯ç²’å­æ»¤æ³¢è®¾è®¡çš„é‡è¦çŽ¯èŠ‚,也是é¿å…或克æœâ€œæƒå€¼é€€åŒ–â€å’Œâ€œå¤šæ ·æ€§åŒ®ä¹â€è¿™ä¸€å¯¹ç²’å­æ»¤æ³¢éš¾ç‚¹é—®é¢˜çš„关键。当å‰ç ”究领域已有几åä½™ç§é‡é‡‡æ ·æ–¹æ³•ï¼Œç„¶è€Œå°šç¼ºä¹ä¸€ä¸ªåŸºç¡€æ€§çš„é‡é‡‡æ ·è®¾è®¡åŽŸåˆ™ä»¥åŠå¯¹è¿™äº›æ–¹æ³•çš„综åˆæ€§èƒ½å¯¹æ¯”。针对于此,本文æ出é‡é‡‡æ ·â€œåŒåˆ†å¸ƒâ€è®¾è®¡åŽŸåˆ™ï¼Œå¹¶åœ¨æ­¤åŸºç¡€ä¸Šï¼Œæ出一ç§èƒ½å¤Ÿæœ€å¤§ç¨‹åº¦æ»¡è¶³åŒåˆ†å¸ƒåŽŸåˆ™çš„最优é‡é‡‡æ ·æ–¹æ³•ã€‚本文希望所æ出的é‡é‡‡æ ·åŒåˆ†å¸ƒåŽŸåˆ™ä»¥åŠæ–°æ–¹æ³•æœ‰åˆ©äºŽè¿›ä¸€æ­¥çš„新方法设计或已有方法的工程选用。
创新点:ç†è®ºä¸Šä¸¥æ ¼å®šä¹‰äº†åŒåˆ†å¸ƒåŽŸåˆ™ä½œä¸ºé‡é‡‡æ ·æ–¹æ³•è®¾è®¡çš„æ™®é性原则,给出三ç§åŒåˆ†å¸ƒæµ‹åº¦æ–¹æ³•ï¼›æ出了一ç§æœ€å°é‡‡æ ·æ–¹å·®ï¼ˆMSV: minimum sampling variance)最优é‡é‡‡æ ·æ–¹æ³•ï¼Œåœ¨æ»¡è¶³æ¸è¿‘æ— å性的å‰æ下获得最å°é‡‡æ ·æ–¹å·®ã€‚
方法:给出三ç§â€œé‡é‡‡æ ·åŒåˆ†å¸ƒâ€æµ‹åº¦æ–¹æ³•ï¼šKullback-Leibleråå·®,Kolmogorov-Smirnov统计和采样方差(sampling variance)。所æ出的最å°é‡‡æ ·æ–¹å·®é‡é‡‡æ ·æ”¾å®½äº†æ— å性æ¡ä»¶ï¼Œä»…满足æ¸è¿‘æ— å,但获得了最å°é‡‡æ ·æ–¹å·®ï¼ˆå‚è§å®šç†2-4论è¯ä»¥åŠä»¿çœŸæ€§èƒ½å¯¹æ¯”)。
结论:é‡é‡‡æ ·å‰åŽç²’å­çš„概率分布应该统计上一致(å³â€œåŒåˆ†å¸ƒâ€ï¼‰æ˜¯é‡é‡‡æ ·æ–¹æ³•è®¾è®¡çš„一个é‡è¦åŽŸåˆ™ã€‚明确这一基本原则有利于规范化é‡é‡‡æ ·æ–°æ–¹æ³•çš„设计与工程选用。所æ出的MSVé‡é‡‡æ ·æ–°æ–¹æ³•æ¸è¿‘æ— å,并具有最å°é‡‡æ ·æ–¹å·®çš„优异ç†è®ºç‰¹æ€§ï¼Œå³æœ€ä¼˜åœ°æ»¡è¶³åŒåˆ†å¸ƒåŽŸåˆ™ã€‚算法性能分æžè¡¨æ˜Žï¼šå¤§å¤šæ•°æ— å或者æ¸è¿‘æ— åé‡é‡‡æ ·æ–¹æ³•åœ¨æ»¤æ³¢ç²¾åº¦ä¸Šå·®å¼‚较å°ï¼Œä½†æ˜¯åœ¨é‡‡æ ·æ–¹å·®ã€è®¡ç®—效率方é¢å·®å¼‚较大。å¦ä¸€æ–¹é¢ï¼ŒåŸºäºŽä¸€äº›ç‰¹æ®Šè§„则或者问题模型设计的é‡é‡‡æ ·æ–¹æ³•å¯èƒ½å…·æœ‰ç‰¹åˆ«ä¼˜åŠ¿ã€‚

关键è¯ç»„:粒å­æ»¤æ³¢ï¼›é‡é‡‡æ ·ï¼›ç»Ÿè®¡åŒåˆ†å¸ƒï¼›é‡‡æ ·æ–¹å·®


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1500199

CLC number:

TN713

Download Full Text:

Click Here

Downloaded:

6525

Download summary:

<Click Here> 

Downloaded:

2620

Clicked:

15584

Cited:

8

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2015-09-10

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE