Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

On modeling of electrical cyber-physical systems considering cyber security

Abstract: This paper establishes a new framework for modeling electrical cyber-physical systems (ECPSs), integrating both power grids and communication networks. To model the communication network associated with a power transmission grid, we use a mesh network that considers the features of power transmission grids such as high-voltage levels, long-transmission distances, and equal importance of each node. Moreover, bidirectional links including data uploading channels and command downloading channels are assumed to connect every node in the communication network and a corresponding physical node in the transmission grid. Based on this model, the fragility of an ECPS is analyzed under various cyber attacks including denial-of-service (DoS) attacks, replay attacks, and false data injection attacks. Control strategies such as load shedding and relay protection are also verified using this model against these attacks.

Key words: Cyber-physical systems, Cyber attacks, Cascading failure analysis, Smart grid

Chinese Summary  <32> 考虑信息安全的电力信息物理系统建模研究

目的:对于电力信息物理系统的建模研究,目前尚未形成统一的模型框架。现有的研究模型采用复杂网络理论,过度简化了电力系统和信息系统的特点,对两个系统的耦合关系表述不清,使得针对信息安全下的黑客攻击研究缺乏有效性,建模方法不具有通用性。为了充分考虑电力信息物理系统及其耦合关系特点,更深入地研究信息安全对耦合系统的影响,本文提出一种新型的电力信息系统建模方式,并以此模型分析连锁故障的传播机理和信息安全的防御策略。
创新点:建立了一个具有可移植性的新型电力信息物理系统模型框架;提出了表征电力系统和信息系统耦合关系特点的具体方式,并以此深入研究电力信息物理系统的连锁故障机理和信息安全防御策略。
方法:结合电网潮流方程和输电网的特点,建立电网模型框架;根据输电网节点配置检测控制装置的要求,自动生成信息网模型框架;按照信息传输指令上传或下载的位置区分构建耦合关系,综合构成电力信息物理系统框架。将继电保护的控制策略应用于提出的模型框架中,通过三种信息攻击(拒绝服务攻击、假数据注入攻击、重放攻击)研究电力信息物理系统的连锁故障机理和防御措施。结合IEEE数据库并利用该框架进行相关仿真实验,验证模型的有效性。
结论:较现有文献,本文的模型更真实地反应电力信息物理系统的特点。应用本文提出的模型可以更深入地分析信息攻击对电力信息物理系统的影响和连锁故障的传播机理。提出的模型具有可移植性,可以应用于各种输电网和配电网中。

关键词组:信息物理系统;信息攻击;连锁故障分析;智能电网


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Baldick, R., Chowdhury, B., Dobson, I., et al., 2008. Initial review of methods for cascading failure analysis in electric power transmission systems. Proc. IEEE Power and Energy Society General Meeting, p.1-8.

[2]Bao, Z.J., Cao, Y.J., Wang, G.Z., et al., 2009. Analysis of cascading failure in electric grid based on power flow entropy. Phys. Lett. A, 373(34):3032-3040.

[3]Bishop, M., 2002. Computer Security: Art and Science. Addison-Wesley Prefessional, USA.

[4]Buldyrev, S.V., Parshani, R., Paul, G., et al., 2010. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025-1028.

[5]Buldyrev, S.V., Shere, N.W., Cwilich, G.A., 2011. Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E, 83:016112.

[6]Chakrabarti, A., Manimaran, G., 2002. Internet infrastructure security: a taxonomy. IEEE Netw., 16(6):13-21.

[7]Chen, P.Y., Cheng, S.M., Chen, K.C., 2012. Smart attacks in smart grid communication networks. IEEE Commun. Mag., 50(8):24-29.

[8]Dobson, I., Carreras, B.A., Lynch, V.E., et al., 2001. An initial model for complex dynamics in electric power system blackouts. Proc. Hawaii Int. Conf. on System Sciences, p.1-9.

[9]Gungor, V.C., Sahin, D., Kocak, T., et al., 2011. Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform., 7(4):529-539.

[10]Hu, Y., Ksherim, B., Cohen, R., et al., 2011. Percolation in interdependent and interconnected networks: abrupt change from second- to first-order transitions. Phys. Rev. E, 84:066116.

[11]Huang, T.E., Sun, H.B., Guo, Q.L., et al., 2015. Knowledge management and security early warning based on big simulation data in power grid operation. Power Syst. Technol., 39(11):3080-3087 (in Chinese).

[12]Huang, X., Gao, J., Buldyrev, S.V., et al., 2011. Robustness of interdependent networks under targeted attack. Phys. Rev. E, 83:065101.

[13]Koç, Y., Warnier, M., Mieghem, P.V., et al., 2014. The impact of the topology on cascading failures in a power grid model. Phys. A, 402:169-179.

[14]Liu, Y., Ning, P., Reiter, M.K., 2011. False data injection attacks against state estimation in electric power grids. ACM Trans. Inform. Syst. Secur., 14(1):13.1-13.33.

[15]Morris, R.G., Barthelemy, M., 2013. Interdependent networks: the fragility of control. Sci. Reports, 3:2764.1-2764.5.

[16]Parandehgheibi, M., Modiano, E., Hay, D., 2014. Mitigating cascading failures in interdependent power grids and communication networks. Proc. IEEE Int. Conf. on Smart Grid Communications, p.242-247.

[17]Parshani, R., Buldyrev, S.V., Havlin, S., 2010. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett., 105:048701.

[18]Pasqualetti, F., Dörfler, F., Bullo, F., 2013. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Contr., 58(11):2715-2729.

[19]Schneider, C.M., Yazdani, N., Araújo, N.A.M., et al., 2013. Towards designing robust coupled networks. Sci. Reports, 3:1969.1-1969.7.

[20]Shao, J., Buldyrev, S.V., Havlin, S., et al., 2011. Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E, 83:036116.

[21]Shin, D.H., Qian, D., Zhang, J., 2014. Cascading effects in interdependent networks. IEEE Netw., 28(4):82-87.

[22]Stott, B., Jardim, J., Alsac, O., 2009. DC power flow revisited. IEEE Trans. Power Syst., 24(3):1290-1300.

[23]Teixeira, A., Shames, I., Sandberg, H., et al., 2015a. A secure control framework for resource-limited adversaries. Automatica, 51:135-148.

[24]Teixeira, A., Sou, K.C., Sandberg, H., et al., 2015b. Secure control systems: a quantitative risk management approach. IEEE Contr. Syst., 35(1):24-45.

[25]Wang, S.Z., 2012. Power System Control and Dispatching Automation (2nd Ed.). China Electric Power Press, China (in Chinese).

[26]Wei, J., Kundur, D., Zourntos, T., et al., 2014. A flocking-based paradigm for hierarchical cyber-physical smart grid modeling and control. IEEE Trans. Smart Grid, 5(6):2687-2700.

[27]Yang, Q., Barria, J.A., Green, T.C., 2011. Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inform., 7(2):316-327.

[28]Zhao, F., Sun, H.B., Huang, T.E., et al., 2015. Design and engineering application of automatic discovery system for critical flowgates and security operation rules in power grids. Autom. Elect. Power Syst., 39(1):117-123 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1500446

CLC number:

TM711; TP11

Download Full Text:

Click Here

Downloaded:

2548

Download summary:

<Click Here> 

Downloaded:

2070

Clicked:

6258

Cited:

3

On-line Access:

2016-05-04

Received:

2015-12-13

Revision Accepted:

2016-04-10

Crosschecked:

2016-04-19

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE