Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

1.3-μm 4×25-Gb/s hybrid integrated TOSA and ROSA

Abstract: The design and fabrication of a compact and low-cost 4×25-Gb/s transmitter optical sub-assembly (TOSA) and receiver optical sub-assembly (ROSA) using a hybrid integrated technique are reported. TOSA and ROSA are developed without thermoelectric cooler for coarse wavelength division multiplexing applications. Physical dimension of the packaged optical sub- assembly is limited to 11.5 mm×5.4 mm×5.4 mm. The design of TOSA and ROSA is employed using a silica-based arrayed waveguide grating chip to select the specific channel wavelength at O-band. In TOSA, the wavelength of four 1.3-μm discrete directly modulated laser chips is well controlled based on the reconstruction equivalent chirp technique. In the back-to-back transmission test, bit error rates for all lanes of cascade of the TOSA and ROSA are small. A clear opening eye diagram is obtained.

Key words: Reconstruction equivalent chirp, Arrayed waveguide grating, Transmitter optical subassembly, Hybrid integrated

Chinese Summary  <21> 1.3-µm 4×25-Gb/s混合集成收发光子组件

摘要:介绍了一种采用混合集成技术的小型低成本4×25-Gb/s收发光子组件(TOSA/ROSA)的设计与制造。TOSA和ROSA在无热电冷却器(TEC)情况下可满足粗波分复用(CWDM)应用。光学子组件(OSA)封装外壳的物理尺寸为11.5 mm×5.4 mm×5.4 mm。采用石英基阵列波导光栅(AWG)芯片作为TOSA和ROSA波长的复用和解复用器件。选择O波段特定通道波长。在TOSA中,重建等效啁啾(REC)技术能实现对4个1.3µm离散直接调制激光器(DML)芯片波长的精确控制。在背靠背传输试验中,TOSA和ROSA组成链路中各通道误码率在满足100G-4WDM-10标准下灵敏度分别为−7.1、−6.6、−6.2和−5.1 dBm。采样示波器的数据经过处理后能得到清晰端正的眼图。

关键词组:重建等效啁啾;阵列式光波导;发射机光学组件;混合集成


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Baek Y, Han YT, Lee CW, et al., 2012. Optical components for 100G ethernet transceivers. Proc 17th Opto- Electronics and Communications Conf, p.218-219.

[2]Dai HQ, An JM, Wang Y, et al., 2014. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate. J Semicond, 35(10):104010.

[3]Dai YT, Chen XF, 2007. DFB semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Expr, 15(5):2348-2353.

[4]Doi Y, Oguma M, Yoshimatsu T, et al., 2015. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s Ethernet. J Lightw Technol, 33(15):3286- 3292.

[5]Dong P, Liu X, Chandrasekhar S, et al., 2014. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quant Electr, 20(4):150-157.

[6]Kanazawa S, Kobayashi W, Ueda Y, et al., 2016. 30-km error- free transmission of directly modulated DFB laser array transmitter optical sub-assembly for 100-Gb application. J Lightw Technol, 34(15):3646-3652.

[7]Kang SK, Lee JK, Lee JC, et al., 2010. A compact 4×10-Gb/s CWDM ROSA module for 40G Ethernet optical transceiver. Proc 60th Electronic Components and Technology Conf, p.2001-2005.

[8]Li CY, An JM, Zhang JS, et al., 2018. 4×20 GHz silica-based AWG hybrid integrated receiver optical sub-assemblies. Chin Opt Lett, 16(6):060603.

[9]Machado LM, Delrosso G, Borin F, et al., 2014. Advanced optical communication systems and devices. Proc 5th Electronics System-Integration Technology Conf, p.1-4.

[10]Ohyama T, Doi Y, Kobayashi W, et al., 2016. Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer. J Lightw Technol, 34(3):1038-1046.

[11]Zhang YS, Liu Y, Lu J, et al., 2017. DFB laser arrays based on the REC technique and their applications in radio-over- fiber systems. Chin Opt Lett, 15(1):010005.

[12]Zhang ZK, Liu Y, An JM, et al., 2018. 112  Gbit/s transmitter optical subassembly based on hybrid integrated directly modulated lasers. Chin Opt Lett, 16(6):062501.

[13]Zhao ZP, Liu Y, Zhang ZK, et al., 2016. 1.5μm, 8×12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application. Chin Opt Lett, 14(12):45-49.

[14]Zhong KP, Zhou X, Huo JH, et al., 2017. Amplifier-less transmission of single channel 112 Gbit/s PAM4 signal over 40km using 25G EML and APD at O band. Proc European Conf on Optical Communication, p.1-3.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800371

CLC number:

TN24

Download Full Text:

Click Here

Downloaded:

3657

Clicked:

5182

Cited:

0

On-line Access:

2019-05-14

Received:

2018-07-04

Revision Accepted:

2018-09-09

Crosschecked:

2019-04-11

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE