Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Displacement measuring grating interferometer: a review

Abstract: A grating interferometer, called the “optical encoder,” is a commonly used tool for precise displacement measurements. In contrast to a laser interferometer, a grating interferometer is insensitive to the air refractive index and can be easily applied to multi-degree-of-freedom measurements, which has made it an extensively researched and widely used device. Classified based on the measuring principle and optical configuration, a grating interferometer experiences three distinct stages of development: homodyne, heterodyne, and spatially separated heterodyne. Compared with the former two, the spatially separated heterodyne grating interferometer could achieve a better resolution with a feature of eliminating periodic nonlinear errors. Meanwhile, numerous structures of grating interferometers with a high optical fold factor, a large measurement range, good usability, and multi-degree-of-freedom measurements have been investigated. The development of incremental displacement measuring grating interferometers achieved in recent years is summarized in detail, and studies on error analysis of a grating interferometer are briefly introduced.

Key words: Grating interferometer, Optical encoder, Displacement measurement, Precision measurement

Chinese Summary  <27> 位移测量光栅干涉仪综述

摘要:光栅干涉仪是测量精密位移的常用方法。和激光干涉仪相比,光栅干涉仪对空气折射率不敏感且易于实现多自由度测量结构,因此被广泛研究、应用。从光学测量原理角度看,光栅干涉仪历经零差干涉、外差干涉和空间分离式外差干涉3个阶段。与前两者相比,空间分离式外差光栅干涉仪具有能消除光学混叠引起纳米级周期非线性误差的特性,可以获得更高位移测量精度。与此同时,各式各样光栅干涉仪结构被提出,以提高光学细分数、增加量程、提升适用性或实现多自由度位置姿态测量。本文详细总结了近年来增量式位移测量光栅干涉仪的发展,并简述其测量误差相关的研究。

关键词组:光栅干涉仪;光学编码器;位移测量;精密测量


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1800708

CLC number:

TH744.3; TH822

Download Full Text:

Click Here

Downloaded:

4511

Download summary:

<Click Here> 

Downloaded:

1653

Clicked:

7807

Cited:

0

On-line Access:

2019-06-10

Received:

2018-11-07

Revision Accepted:

2019-02-23

Crosschecked:

2019-05-08

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE