|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2021 Vol.22 No.5 P.697-708
Latent discriminative representation learning for speaker recognition
Abstract: Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems. In this study, we propose a latent discriminative representation learning method for speaker recognition. We mean that the learned representations in this study are not only discriminative but also relevant. Specifically, we introduce an additional speaker embedded lookup table to explore the relevance between different utterances from the same speaker. Moreover, a reconstruction constraint intended to learn a linear mapping matrix is introduced to make representation discriminative. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods based on the Apollo dataset used in the Fearless Steps Challenge in INTERSPEECH2019 and the TIMIT dataset.
Key words: Speaker recognition, Latent discriminative representation learning, Speaker embedding lookup table, Linear mapping matrix
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1900690
CLC number:
TP391.4
Download Full Text:
Downloaded:
4617
Clicked:
6795
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2020-11-18