Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios

Abstract: Platoon control is widely studied for coordinating connected and automated vehicles (CAVs) on highways due to its potential for improving traffic throughput and road safety. Inspired by platoon control, the cooperation of multiple CAVs in conflicting scenarios can be greatly simplified by virtual platooning. Vehicle-to-vehicle communication is an essential ingredient in virtual platoon systems. Massive data transmission with limited communication resPreprintources incurs inevitable imperfections such as transmission delay and dropped packets. As a result, unnecessary transmission needs to be avoided to establish a reliable wireless network. To this end, an event-triggered robust control method is developed to reduce the use of communication resources while ensuring the stability of the virtual platoon system with time-varying uncertainty. The uniform boundedness, uniform ultimate boundedness, and string stability of the closed-loop system are analytically proved. As for the triggering condition, the uncertainty of the boundary information is considered, so that the threshold can be estimated more reasonably. Simulation and experimental results verify that the proposed method can greatly reduce data transmission while creating multi-vehicle cooperation. The threshold affects the tracking ability and communication burden, and hence an optimization framework for choosing the threshold is worth exploring in future research.

Key words: Connected and automated vehicles; Event-triggered control; Nonlinear and uncertain dynamics; Conflicting scenarios

Chinese Summary  <23> 冲突场景下基于事件触发的多车协同控制与实验验证

胡展溢1,乔英俊2,3,李星宇1,黄晋1,贾一帆1,钟志华2
1清华大学车辆与运载学院,中国北京市,100084
2中国工程院,中国北京市,100088
3同济大学道路与交通工程教育部重点实验室,中国上海市,200092
摘要:队列系统在提高交通吞吐量和道路安全方面极具潜力,其被广泛用于高速公路上智能网联汽车的协同控制。受队列控制的启发,虚拟队列可以极大地简化冲突场景下智能网联多车系统的协同行驶。车车通信是虚拟队列系统的重要组成部分。在通信资源有限的情况下,大量数据传输必然会出现传输延迟、丢包等缺陷。因此,需要避免不必要的传输,从而建立一个可靠的无线网络。针对这一问题,本文提出一种基于事件触发的鲁棒控制方法,在保证时变不确定性条件下虚拟队列系统稳定性的同时,减少通信资源的利用。本文解析地证明了闭环系统的一致有界性、一致最终有界性和队列稳定性。本文所设计的触发条件考虑了边界信息的不确定性,使阈值估计更加合理。仿真和实验结果表明,该方法可以在多车协作的同时大大减少数据传输。阈值的选取影响跟踪能力和通信负担,其优化方法值得在今后的研究中探索。

关键词组:智能网联汽车;事件触发控制;非线性不确定性动力学;冲突区域


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2100504

CLC number:

U4;TP29

Download Full Text:

Click Here

Downloaded:

2716

Download summary:

<Click Here> 

Downloaded:

306

Clicked:

1983

Cited:

0

On-line Access:

2022-10-26

Received:

2021-10-24

Revision Accepted:

2022-10-26

Crosschecked:

2022-03-14

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE