Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Domain adaptation in reinforcement learning: a comprehensive and systematic study

Abstract: Reinforcement learning (RL) has shown significant potential for dealing with complex decision-making problems. However, its performance relies heavily on the availability of a large amount of high-quality data. In many real-world situations, data distribution in the target domain may differ significantly from that in the source domain, leading to a significant drop in the performance of RL algorithms. Domain adaptation (DA) strategies have been proposed to address this issue by transferring knowledge from a source domain to a target domain. However, there have been no comprehensive and in-depth studies to evaluate these approaches. In this paper we present a comprehensive and systematic study of DA in RL. We first introduce the basic concepts and formulations of DA in RL and then review the existing DA methods used in RL. Our main objective is to fill the existing literature gap regarding DA in RL. To achieve this, we conduct a rigorous evaluation of state-of-the-art DA approaches. We aim to provide comprehensive insights into DA in RL and contribute to advancing knowledge in this field. The existing DA approaches are divided into seven categories based on application domains. The approaches in each category are discussed based on the important data adaptation metrics, and then their key characteristics are described. Finally, challenging issues and future research trends are highlighted to assist researchers in developing innovative improvements.

Key words: Reinforcement learning; Domain adaptation; Machine learning

Chinese Summary  <6> 综述:强化学习中的领域适应

Amirfarhad FARHADI1, Mitra MIRZAREZAEE1, Arash SHARIFI1, Mohammad TESHNEHLAB2
1伊斯兰阿扎德大学计算机工程系,伊朗德黑兰市,1477893855
2KN图什理工大学控制工程学院,伊朗德黑兰市,1999143344
摘要:强化学习(RL)在处理复杂决策问题方面显示出巨大的潜力。然而,其性能很大程度上依赖于大量高质量数据的可用性。在许多实际情况中,目标域的数据分布可能与源域的数据分布有很大差异,导致强化学习算法的性能显著下降。领域适应(DA)策略通过将知识从源域转移到目标域来解决这一问题。然而,目前尚无全面且深入的研究来评估这些方法。本文对强化学习中的领域适应进行了全面系统的研究。首先介绍强化学习中领域适应的基本概念和基本表述,然后对其中现有的领域适应方法进行综述。主要目的是填补关于强化学习中领域适应的现有文献空白。为了实现这一目的,本文对最先进的领域适应方法进行了严格的评估,希望为强化学习中的领域适应提供全面的见解,并为该领域的知识进步做出贡献。现有的领域适应方法根据应用领域分为7类。基于重要的数据自适应度量对每一类方法进行讨论,并描述它们的关键特征。最后,强调了具有挑战性的问题和未来的研究趋势,以帮助研究人员创新和改进。

关键词组:强化学习;领域适应;机器学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2300668

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

658

Download summary:

<Click Here> 

Downloaded:

54

Clicked:

1153

Cited:

0

On-line Access:

2024-12-26

Received:

2023-10-01

Revision Accepted:

2024-12-26

Crosschecked:

2024-03-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE