|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2024 Vol.25 No.11 P.1515-1535
Enhancing modelling accuracy of cascaded spline adaptive filters using the remora optimisation algorithm: application to real-time systems
Abstract: We first introduce a new approach for optimising a cascaded spline adaptive filter (CSAF) to identify unknown nonlinear systems by using a meta-heuristic optimisation algorithm (MOA). The CSAF architecture combines Hammerstein and Wiener systems, where the nonlinear blocks are implemented with the spline network. The algorithms used optimise the weights of the spline interpolation function and linear filter by using an adequately weighted cost function, leading to improved filter stability, steady state performance, and guaranteed convergence to globally optimal solutions. We investigate two CSAF architectures: Hammerstein–Wiener SAF (HW-SAF) and Wiener–Hammerstein SAF (WH-SAF) structures. These architectures have been designed using gradient-based approaches which are inefficient due to poor convergence speed, and produce suboptimal solutions in a Gaussian noise environment. To avert these difficulties, we estimate the design parameters of the CSAF architecture using four independent MOAs: differential evolution (DE), brainstorm optimisation (BSO), multi-verse optimiser (MVO), and a recently proposed remora optimisation algorithm (ROA). In ROA, the remora factor’s control parameters produce near-global optimal parameters with a higher convergence speed. ROA also ensures the most balanced exploration and exploitation phases compared to DE-, BSO-, and MVO-based design approaches. Finally, the identification results of three numerical and industry-specific benchmark systems, including coupled electric drives, a thermic wall, and a continuous stirred tank reactor, are presented to emphasise the effectiveness of the ROA-based CSAF design.
Key words: Cascaded spline adaptive filter; Nonlinear system identification; Remora optimisation algorithm
1
萨西技术与工程学院电子与通信工程系JNTUK认证研究中心,印度安得拉邦,534101
2
拉普尔国立理工学院电子与通信工程系,印度查蒂斯加尔邦,492010
3
杜尔加普尔国立理工学院电子与通信工程系,印度西孟加拉邦,713209
摘要:
介绍了一种新的优化级联样条自适应滤波器(CSAF)方法,通过使用元启发式优化算法(MOA)识别未知的非线性系统。CSAF架构结合了汉默斯坦和维纳系统,其中非线性块通过样条网络实现。所用算法通过适当加权的成本函数优化样条插值函数和线性滤波器的权重,从而提高滤波器的稳定性、稳态性以及全局最优解的收敛性。本文研究了两种CSAF架构:汉默斯坦-维纳样条自适应滤波器(HW-SAF)和维纳-汉默斯坦样条自适应滤波器(WH-SAF)结构。这两种架构是基于梯度方法设计的,其收敛速度慢,效率低,且在高斯噪声环境下会产生次优解。为克服以上困难,本文采用4种独立的MOA以估计CSAF架构的设计参数:差分进化(DE)、头脑风暴优化(BSO)、多元宇宙优化器(MVO)以及最近提出的印鱼优化算法(ROA)。在ROA中,印鱼因子的控制参数能以更高的收敛速度产生接近全局最优的参数。与基于DE、BSO和MVO的方法相比,ROA确保了探索和开发阶段的平衡。最后,3个数值和特定行业基准系统(即耦合电驱动、热壁和连续搅拌槽反应器)的识别结果表明了基于印鱼优化算法CSAF的有效性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2300817
CLC number:
O231
Download Full Text:
Downloaded:
532
Clicked:
975
Cited:
0
On-line Access:
2024-12-26
Received:
2023-12-03
Revision Accepted:
2024-03-21
Crosschecked:
2024-12-26