|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.4 P.556-567
Dynamic prompting class distribution optimization for semi-supervised sound event detection
Abstract: Semi-supervised sound event detection (SSED) tasks typically leverage a large amount of unlabeled and synthetic data to facilitate model generalization during training, reducing overfitting on a limited set of labeled data. However, the generalization training process often encounters challenges from noisy interference introduced by pseudo-labels or domain knowledge gaps. To alleviate noisy interference in class distribution learning, we propose an efficient semi-supervised class distribution learning method through dynamic prompt tuning, named prompting class distribution optimization (PADO). Specifically, when modeling real labeled data, PADO dynamically incorporates independent learnable prompt tokens to explore prior knowledge about the true distribution. Then, the prior knowledge serves as prompt information, dynamically interacting with the posterior noisy-class distribution information. In this case, PADO achieves class distribution optimization while maintaining model generalization, leading to a significant improvement in the efficiency of class distribution learning. Compared with state-of-the-art methods on the SSED datasets from DCASE 2019, 2020, and 2021 challenges, PADO achieves significant performance improvements. Furthermore, it is readily extendable to other benchmark models.
Key words: Prompt tuning; Class distribution learning; Semi-supervised learning; Sound event detection
1江苏大学计算机科学与通信工程学院,中国镇江市,212016
2江苏省大数据泛在感知与智能农业应用工程研究中心,中国镇江市,212016
摘要:半监督声音事件检测任务通常利用大规模无标签数据和合成数据提升模型的泛化能力,从而有效降低模型在少量有标注数据上的过拟合。然而,泛化训练过程通常伴随伪标签噪声和域知识差异造成的干扰。为缓解半噪声干扰类分布学习的问题,提出一种基于动态提示优化的半监督类分布学习方法(PADO)。具体而言,当给定真实标签数据时,PADO动态嵌入一组可学习的独立参数(类令牌)以挖掘真实分布的先验知识,作为额外提示信息,与带噪后验分布知识动态交互,从而实现类分布知识的优化,并保留模型泛化性能。基于此,PADO能够显著提升类分布学习效率。在DCASE2019、2020及2021数据集上的实验结果表明,PADO明显优于当前先进方法,且易于迁移至其他主流模型。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400061
CLC number:
TP391.4
Download Full Text:
Downloaded:
1533
Download summary:
<Click Here>Downloaded:
293Clicked:
1477
Cited:
0
On-line Access:
2025-05-06
Received:
2024-01-27
Revision Accepted:
2024-06-27
Crosschecked:
2025-05-06