|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.6 P.877-895
CUSMART: effective parallelization of string matching algorithms using GPGPU accelerators
Abstract: This study presents a parallel version of the string matching algorithms research tool (SMART) library, implemented on NVIDIA’s compute unified device architecture (CUDA) platform, and uses general-purpose computing on graphics processing unit (GPGPU) programming concepts to enhance performance and gain insight into the parallel versions of these algorithms. We have developed the CUDA-enhanced SMART (CUSMART) library, which incorporates parallelized iterations of 64 string matching algorithms, leveraging the CUDA application programming interface. The performance of these algorithms has been assessed across various scenarios to ensure a comprehensive and impartial comparison, allowing for the identification of their strengths and weaknesses in specific application contexts. We have explored and established optimization techniques to gauge their influence on the performance of these algorithms. The results of this study highlight the potential of GPGPU computing in string matching applications through the scalability of algorithms, suggesting significant performance improvements. Furthermore, we have identified the best and worst performing algorithms in various scenarios.
Key words: String matching; Parallel programming; Graphics processing unit (GPU) programming; General-purpose computing on GPU (GPGPU); NVIDIA; Compute unified device architecture (CUDA); String matching algorithms research tool (SMART)
1哈西德佩大学计算机工程系,土耳其安卡拉省,06800
2马里兰大学帕克分校计算机科学系,美国马里兰州,20742
3加齐大学计算机工程系,土耳其安卡拉省,06570
摘要:提出一种字符串匹配算法研究工具(SMART)库的并行版本,该版本在NVDIA的统一计算设备架构(CUDA)平台上实现,采用通用图形处理器(GPGPU)编程概念以提升性能及深入了解这些字符匹配算法的并行版本。利用CUDA应用程序编程接口(API)开发了CUDA增强的SMART(CUSMART)库,该库集成了64种字符串匹配算法的并行迭代。为确保全面且公正的比较,在各种场景下评估这些算法的性能,进而识别它们在特定应用场景中的优势和劣势。探索并建立了优化技术,以评估它们对算法性能的影响。该研究的结果通过算法的可扩展性突出了GPGPU计算在字符串匹配应用中的潜力,表明性能有显著提高。此外,确定了不同场景下表现最佳和最差的算法。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2400091
CLC number:
TP391.4
Download Full Text:
Downloaded:
1407
Download summary:
<Click Here>Downloaded:
309Clicked:
1129
Cited:
0
On-line Access:
2025-07-02
Received:
2024-02-06
Revision Accepted:
2025-07-02
Crosschecked:
2024-07-23