Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Visual knowledge in the big model era: retrospect and prospect

Abstract: Visual knowledge is a new form of knowledge representation that can encapsulate visual concepts and their relations in a succinct, comprehensive, and interpretable manner, with a deep root in cognitive psychology. As the knowledge of the visual world has been identified as an indispensable component of human cognition and intelligence, visual knowledge is poised to have a pivotal role in establishing machine intelligence. With the recent advance of artificial intelligence (AI) techniques, large AI models (or foundation models) have emerged as a potent tool capable of extracting versatile patterns from broad data as implicit knowledge, and abstracting them into an outrageous amount of numeric parameters. To pave the way for creating visual knowledge empowered AI machines in this coming wave, we present a timely review that investigates the origins and development of visual knowledge in the pre-big-model era, and accentuates the opportunities and unique role of visual knowledge in the big model era.

Key words: Visual knowledge; Artificial intelligence; Foundation model; Deep learning

Chinese Summary  <2> 大模型时代的视觉知识:回顾与展望

王文冠,杨易,潘云鹤
浙江大学计算机科学与技术学院,中国杭州市,310027
摘要:视觉知识是一种新型知识表达形式,其理论之根深植于认知科学;视觉知识旨在为视觉智能的核心要素--如视觉概念、视觉关系、视觉操作和视觉推理--提供统一、全面且可解释的理论框架和建模方法。认知科学的研究实证了视觉相关知识在人类认知过程和智能行为中扮演着不可或缺的角色,由此可以推断,视觉知识的表达与学习将对发展视觉智能和机器智能起到重要作用。近年来,人工智能不断取得进步,尤其是人工智能大模型涌现出超越传统模型的智能水平,大模型能够自动从海量数据中发现普遍性规律,并将这些规律编码进超大规模神经网络的参数之中,实现了大规模知识自动提取和隐式知识参数化存储。这场由大模型驱动的新一轮人工智能技术革命,将为构建具备视觉知识的先进智能体带来新的机遇和挑战。对此,本文深入剖析视觉知识的理论基础,系统性回顾近年来视觉知识相关领域的发展状况。同时,针对大模型时代下视觉知识的发展方向以及其可能发挥的关键作用,提出前瞻性观点和展望。

关键词组:视觉知识;人工智能;基础模型;深度学习


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400250

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

488

Download summary:

<Click Here> 

Downloaded:

30

Clicked:

908

Cited:

0

On-line Access:

2025-02-10

Received:

2024-04-02

Revision Accepted:

2024-05-26

Crosschecked:

2025-02-18

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE