Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

A power optimization approach for mixed polarity Reed–Muller logic circuits based on multi-strategy fusion memetic algorithm

Abstract: The power optimization of mixed polarity Reed‍–‍Muller (MPRM) logic circuits is a classic combinatorial optimization problem. Existing optimization approaches often suffer from slow convergence and a propensity to converge to local optima, limiting their effectiveness in achieving optimal power efficiency. First, we propose a novel multi-strategy fusion memetic algorithm (MFMA). MFMA integrates global exploration via the chimp optimization algorithm with local exploration using the coati optimization algorithm based on the optimal position learning and adaptive weight factor (COA-OLA), complemented by population management through truncation selection. Second, leveraging MFMA, we propose a power optimization approach for MPRM logic circuits that searches for the best polarity configuration to minimize circuit power. Experimental results based on Microelectronics Center of North Carolina (MCNC) benchmark circuits demonstrate significant improvements over existing power optimization approaches. MFMA achieves a maximum power saving rate of 72.30% and an average optimization rate of 43.37%; it searches for solutions faster and with higher quality, validating its effectiveness and superiority in power optimization.

Key words: Power optimization; Multi-strategy fusion memetic algorithm (MFMA); Mixed polarity Reed‍–‍Muller (MPRM); Combinatorial optimization problem

Chinese Summary  <1> 一种基于MFMA的MPRM逻辑电路功耗优化方法

张梦雨1,2,何振学1,2,王伊瑾1,2,赵晓君1,2,张晓丹1,2,肖利民3,王翔4
1河北农业大学智能农业装备研究院,中国保定市,071001
2河北农业大学河北省农业大数据重点实验室,中国保定市,071001
3北京航空航天大学计算机学院,中国北京市,100191
4北京航空航天大学电子信息工程学院,中国北京市,100191
摘要:混合极性Reed-Muller(MPRM)逻辑电路功耗优化是一种典型的组合优化问题。现有功耗优化方法存在收敛速度慢、易陷入局部最优等问题,在实现最佳功耗方面的有效性十分有限。首先,本文提出一种多策略融合模因算法(MFMA),利用黑猩猩优化算法进行全局勘探,利用基于最优位置学习和自适应权重因子的浣熊优化算法(COA-OLA)进行局部探索,最后采用截断选择算法进行新种群选择。其次,基于MFMA提出一种MPRM逻辑电路功耗优化方法,通过寻找最佳极性配置,使得电路功耗最小化。基于MCNC基准电路的实验结果表明,与现有的功耗优化方法相比,本功耗优化方法有显著的改进。MFMA实现最高功耗优化率为72.30%,平均优化率为43.37%。同时,MFMA搜索解的速度更快且质量更好,验证了其在功耗优化方面的有效性和优越性。

关键词组:功耗优化;多策略融合模因算法(MFMA);混合极性Reed-Muller(MPRM);组合优化问题


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2400513

CLC number:

TP331.1

Download Full Text:

Click Here

Downloaded:

335

Download summary:

<Click Here> 

Downloaded:

34

Clicked:

295

Cited:

0

On-line Access:

2025-04-03

Received:

2024-06-14

Revision Accepted:

2024-09-26

Crosschecked:

2025-04-07

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE