|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.10 P.1984-1999
MltAuxTSPP: a unified benchmark for deep learning-based traffic state prediction with multi-source auxiliary data
Abstract: Deep learning has empowered traffic prediction models to integrate diverse auxiliary data sources, such as weather and temporal features, for enhanced forecasting accuracy. However, existing approaches often suffer from limited generality and scalability, and the field lacks a unified benchmark for fair model comparison. This absence hinders consistent performance evaluation, slows the development of robust and adaptable models, and makes it challenging to quantify the incremental benefits of different auxiliary data sources. To address these issues, we present MltAuxTSPP, a unified benchmark framework for deep learning-based traffic state prediction with multi-source auxiliary data. The framework features a standardized data container and a fusion embedding module, enabling consistent utilization of heterogeneous data and improving scalability. It produces unified hidden representations that can be seamlessly adopted by various downstream models, ensuring fair and reproducible comparisons under identical conditions. Extensive experiments on real-world datasets demonstrate that MltAuxTSPP effectively leverages weather and temporal features to improve long-term forecast performance and offers a practical and reproducible foundation for advancing research in traffic state prediction.
Key words: Traffic prediction; Benchmark platform; Deep learning; Multi-source auxiliary data
1浙江大学控制科学与工程学院,中国杭州市,310027
2浙江大学工业控制技术全国重点实验室,中国杭州市,310027
3东南大学数学学院,中国南京市,211189
摘要:深度学习使交通预测模型能够融合多种辅助数据源(如天气和时间信息),从而提升预测精度。现有方法往往存在通用性与可扩展性受限的问题,且该领域缺乏统一的基准测试框架来实现公平的模型比较。这种缺失阻碍了性能评估的一致性,延缓了稳健且适应性强的模型开发进程,导致量化不同辅助数据源的增量效益变得困难。为解决这些问题,我们提出MltAuxTSPP—一个融合多源辅助数据的交通预测深度学习统一基准框架。该框架具备标准化数据容器与融合嵌入模块,可实现异构数据的统一处理并提升可扩展性。其生成的统一隐含表示能被各类下游模型无缝采用,确保在相同条件下进行公平可复现的比较。基于真实数据集的广泛实验表明,MltAuxTSPP能有效利用气象与时间特征提升长期预测性能,为推进交通状态预测研究提供实用且可复现的基础框架。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500169
CLC number:
TP18
Download Full Text:
Downloaded:
212
Download summary:
<Click Here>Downloaded:
20Clicked:
449
Cited:
0
On-line Access:
2025-11-17
Received:
2025-03-17
Revision Accepted:
2025-11-18
Crosschecked:
2025-08-17