Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method

Abstract: The coexistence of ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB) services in 5G-based industrial wireless networks (IWNs) poses significant resource slicing challenges due to their inherent performance requirement conflicts. To address this challenge, this paper proposes a puncturing method that uses a model-aided deep reinforcement learning (DRL) algorithm for URLLC over eMBB services in uplink 5G networks. First, a puncturing-based optimization problem is formulated to maximize the eMBB accumulated rate under strict URLLC latency and reliability constraints. Next, we design a random repetition coding-based contention (RRCC) scheme for sporadic URLLC traffic and derive its analytical reliability model. To jointly optimize the scheduling parameters of URLLC and eMBB, a DRL solution based on the reliability model is developed, which is capable of dynamically adapting to changing environments. The accelerated convergence of the model-aided DRL algorithm is demonstrated using simulations, and the superiority in resource efficiency of the proposed method over existing approaches is validated.

Key words: Uplink 5G networks; Enhanced mobile broadband (eMBB); Ultra-reliable low-latency communication (URLLC); Resource slicing; Puncturing; Deep reinforcement learning (DRL)

Chinese Summary  <1> 面向5G工业无线网络的URLLC与eMBB混合业务上行链路穿刺传输:一种模型辅助深度强化学习方法

丁菁芳1,郑萌1,于海斌2,3,王倚天2,3,4,许驰2,3
1东北大学计算机科学与工程学院,中国沈阳市,110819
2中国科学院机器人学国家重点实验室,中国沈阳市,110016
3中国科学院网络化控制系统重点实验室,中国沈阳市,110016
4中国科学院大学,中国北京市,100049
摘要:在基于5G的工业无线网络(IWN)中,由于性能需求存在本质矛盾,超可靠低时延通信(URLLC)和增强型移动宽带(eMBB)业务的共存问题对资源切片带来重大挑战。针对这一问题,本文提出一种基于模型辅助深度强化学习(DRL)的穿刺传输方法,用于5G上行链路中URLLC业务对eMBB资源的动态抢占。首先,在严格满足URLLC时延与可靠性约束的条件下,构建了以最大化eMBB累积速率为目标的穿刺优化问题。其次,针对零星出现的URLLC业务,设计了一种基于随机重复编码的竞争接入(RRCC)方法,并推导了其可靠性解析模型。随后,基于该可靠性模型提出联合优化URLLC与eMBB调度参数的DRL算法,该算法能够自适应动态网络环境。仿真结果表明,所提模型辅助DRL算法具有更快的收敛速度,且在资源效率方面显著优于现有方法。

关键词组:上行5G网络;增强型移动宽带(eMBB);超可靠低时延通信(URLLC);资源切片;穿刺传输;深度强化学习(DRL)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500173

CLC number:

TN929.5

Download Full Text:

Click Here

Downloaded:

600

Download summary:

<Click Here> 

Downloaded:

211

Clicked:

1310

Cited:

0

On-line Access:

2026-01-08

Received:

2025-03-18

Revision Accepted:

2025-07-22

Crosschecked:

2026-01-08

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE