Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Physics-informed neural networks for the prediction of robot dynamics considering motor and external force couplings

Abstract: In recent years, physics-informed neural networks (PINNs) have shown remarkable potential in modeling conservative systems of rigid-body dynamics. However, when applied to practical interaction tasks of manipulators (e.g., part assembly and medical operations), existing PINN frameworks lack effective external force modeling mechanisms, resulting in significantly degraded prediction accuracy in dynamic interaction scenarios. Additionally, because industrial robots (including UR5 and UR10e robots) are generally not equipped with joint torque sensors, obtaining precise dynamics training data remains challenging. To address these issues, this study proposes two enhanced PINNs that integrate motor dynamics and external force modeling. First, two data-driven Jacobian matrix estimation methods are introduced to incorporate external forces: one method learns the mapping between end-effector velocity and joint velocity to approximate the Jacobian matrix, while the other first learns the system’s kinematic behavior and then derives the Jacobian matrix through analytical differentiation of the forward kinematics model. Second, current-to-torque mapping is embedded as physical prior knowledge to establish direct correlations between system motion states and motor currents. Experimental results on two different manipulators demonstrate that both models achieve high-precision torque estimation in complex external force scenarios without requiring joint torque sensors. Compared with state-of-the-art methods, the proposed models improve overall modeling accuracy by 31.12% and 37.07% on average across various complex scenarios, while reducing joint trajectory tracking errors by 40.31% and 51.79%, respectively.

Key words: Dynamics modeling; Physics-informed neural networks; Motor dynamics; External force modeling; Kinematics

Chinese Summary  <0> 考虑电机与外力耦合的机器人动力学预测

物理信息神经网络
孙丰雨,吴双双,李志明,熊沛霖,陈雯柏
北京信息科技大学自动化学院,中国北京市,100192
摘要:近年来,物理信息神经网络(PINN)在刚体动力学保守系统建模中展现出显著潜力。然而,现有PINN框架在应用于机械臂实际交互任务(如零件装配和医疗操作)时,因缺乏有效的外部作用力建模机制,导致其在动态交互场景中的预测精度显著下降。此外,由于工业机器人(包括UR5和UR10e等型号)通常未配备关节扭矩传感器,获取精确动力学训练数据仍具挑战。为此,本研究提出两种融合电机动力学与外部作用力建模的增强型PINN模型。首先,引入两种数据驱动的雅可比矩阵估计方法以嵌入外部作用力:其一通过学习末端执行器速度与关节速度间映射关系以近似雅可比矩阵;其二先学习系统运动学行为,再通过正向运动学模型解析微分推导雅可比矩阵。其次,将电流-扭矩映射作为物理先验知识嵌入模型,以建立系统运动状态与电机电流的直接关联。在两种不同机械臂上的实验结果表明,所提模型皆无需关节扭矩传感器即可在复杂外部作用力场景下实现高精度扭矩估计。与现有先进方法相比,所提模型在多种复杂场景下整体建模精度平均提高31.12%与37.07%,同时关节轨迹跟踪误差分别降低40.31%与51.79%。

关键词组:动力学建模;物理信息神经网络;电机动力学;外力建模;运动学


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.2500254

CLC number:

TP241.2

Download Full Text:

Click Here

Downloaded:

555

Download summary:

<Click Here> 

Downloaded:

194

Clicked:

988

Cited:

0

On-line Access:

2026-01-09

Received:

2025-04-21

Revision Accepted:

2025-09-28

Crosschecked:

2026-01-11

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE