|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.11 P.2143-2158
Parallel prototype filter and feature refinement for few-shot medical image segmentation
Abstract: Medical image segmentation is critical for clinical diagnosis, but the scarcity of annotated data limits robust model training, making few-shot learning indispensable. Existing methods often suffer from two issues—performance degradation due to significant inter-class variations in pathological structures, and overreliance on attention mechanisms with high computational complexity (O(n²)), which hinders the efficient modeling of long-range dependencies. In contrast, the state space model (SSM) offers linear complexity (O(n)) and superior efficiency, making it a key solution. To address these challenges, we propose PPFFR (parallel prototype filter and feature refinement) for few-shot medical image segmentation. The proposed framework comprises three key modules. First, we propose the prototype refinement (PR) module to construct refined class subgraphs from encoder-extracted features of both support and query images, which generates support prototypes with minimized inter-class variation. We then propose the parallel prototype filter (PPF) module to suppress background interference and enhance the correlation between support and query prototypes. Finally, we implement the feature refinement (FR) module to further enhance segmentation accuracy and accelerate model convergence with SSM’s robust long-range dependency modeling capability, integrated with multi-head attention (MHA) to preserve spatial details. Experimental results on the Abd-MRI dataset demonstrate that FR with MHA outperforms FR alone in segmenting the left kidney, right kidney, liver, and spleen, and in terms of mean accuracy, confirming MHA’s role in improving precision. In extensive experiments conducted on three public datasets under the 1-way 1-shot setting, PPFFR achieves Dice scores of 87.62%, 86.74%, and 79.71% separately, consistently surpassing state-of-the-art few-shot medical image segmentation methods. As the critical component, SSM ensures that PPFFR balances performance with efficiency. Ablation studies validate the effectiveness of the PR, PPF, and FR modules. The results indicate that explicit inter-class variation reduction and SSM-based feature refinement can enhance accuracy without heavy computational overhead. In conclusion, PPFFR effectively enhances inter-class consistency and computational efficiency for few-shot medical image segmentation. This work provides insights for few-shot learning in medical imaging and inspires lightweight architecture designs for clinical deployment.
Key words: Few-shot learning; Medical image segmentation; Prototype filter; State space model
1北京交通大学电子信息工程学院,中国北京市,100044
2河南投资集团有限公司,中国郑州市,450008
摘要:医学图像分割在临床诊断中至关重要,但标注数据的稀缺性限制了模型的鲁棒性训练,使得少样本学习不可或缺。现有方法常面临两个问题:一是病理结构存在显著的类间差异,导致性能下降;二是过度依赖具有高计算复杂度(O(n2))的注意力机制,阻碍了长距离依赖关系的高效建模。相比之下,状态空间模型具有线性复杂度(O(n))和更高效率,成为关键解决方案。为应对这些挑战,我们提出用于少样本医学图像分割的并行原型滤波与特征细化框架(PPFFR)。该框架包含3个关键模块。首先,提出原型优化模块,通过从支持和查询图像的编码特征构建精细的类别子图,生成类间差异最小化的支持原型。随后,设计并行原型滤波模块,以抑制背景干扰并增强支持原型与查询原型之间的相关性。最后,实现特征细化模块,结合状态空间模型强大的长距离依赖建模能力与多头注意力机制对空间细节的保留,进一步提升分割精度并加速模型收敛。在腹部MRI数据集上的实验结果表明,结合多头注意力的特征细化模块在左肾、右肾、肝脏和脾脏的分割任务中均优于单独使用特征细化模块,平均精度也有所提升,证实了多头注意力对提高精度的作用。在1-way 1-shot设置下对3个公共数据集进行的广泛实验中,PPFFR分别取得87.62%、86.74%和79.71%的Dice分数,优于当前最先进的少样本医学图像分割方法。作为核心组件,状态空间模型确保PPFFR在性能与效率间的平衡。消融实验验证了原型优化、并行原型滤波和特征细化模块的有效性。结果表明,类间差异显著减小与基于状态空间模型的特征细化能够在不过度增加计算开销的前提下提升精度。综上所述,PPFFR有效提升了少样本医学图像分割的类间一致性与计算效率。本研究为医学影像领域的少样本学习提供了新思路,并为临床部署的轻量化架构设计带来启示。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500304
CLC number:
TP391.41
Download Full Text:
Downloaded:
887
Clicked:
1105
Cited:
0
On-line Access:
2026-01-08
Received:
2025-05-11
Revision Accepted:
2025-09-03
Crosschecked:
2026-01-08