|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.11 P.2254-2281
E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory
Abstract: Robotic navigation in unknown environments is challenging due to the lack of high-definition maps. Building maps in real time requires significant computational resources. Nevertheless, sensor data can provide sufficient environmental context for robots’ navigation. This paper presents an interpretable and mapless navigation method using only two-dimensional (2D) light detection and ranging (LiDAR), mimicking human strategies to escape from dead ends. Unlike traditional planners, which depend on global paths or vision-based and learning-based methods, requiring heavy data and hardware, our approach is lightweight and robust, and it requires no prior map. It effectively suppresses oscillations and enables autonomous recovery from local minimum traps. Experiments across diverse environments and routes, including ablation studies and comparisons with existing frameworks, show that the proposed method achieves map-like performance without a map—reducing the average path length by 50.51% when compared to the classical mapless Bug2 algorithm and increasing it by only 17.57% when compared to map-based navigation.
Key words: Vector field histogram; Density-based spatial clustering of applications with noise (DBSCAN); Oscillation suppression; Temporary goal prediction
1兰州大学信息科学与工程学院,中国兰州市,730000
2自由研究者,中国济宁市,272000
摘要:由于缺乏高精度地图支撑,在未知环境中进行机器人导航颇具挑战。实时构建地图需要消耗大量计算资源,然而传感器数据可为机器人导航提供充分的环境信息。本文提出一种仅使用二维激光雷达(LiDAR)的可解释无地图导航方法,其通过模拟人类逃离死胡同的策略实现导航。依赖全局路径规划、视觉方法或学习方法的传统方案需大量数据和硬件支持,与之相比,本文提出的方案具有轻量化、鲁棒性强且无需预先地图的特点。该方法能有效抑制振荡现象,具备自主脱离局部最优陷阱的能力。在多样化环境与路线上开展的实验(含消融研究及与现有框架对比)表明,该方法在无地图条件下实现了近似地图导航的性能--相较经典无地图算法Bug2,其平均路径长度缩短50.51%,而相较基于地图的导航方案,平均路径长度仅增加17.57%。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500348
CLC number:
TP242
Download Full Text:
Downloaded:
100
Clicked:
203
Cited:
0
On-line Access:
2026-01-08
Received:
2025-05-29
Revision Accepted:
2025-10-26
Crosschecked:
2026-01-08