|
|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2025 Vol.26 No.10 P.1822-1831
FinSphere: a real-time stock analysis agent with instruction-tuned large language models and domain-specific tool integration
Abstract: Current financial large language models (FinLLMs) exhibit two major limitations: the absence of standardized evaluation metrics for stock analysis quality and insufficient analytical depth. We address these limitations with two contributions. First, we introduce AnalyScore, a systematic framework for evaluating the quality of stock analysis. Second, we construct Stocksis, an expert-curated dataset designed to enhance the financial analysis capabilities of large language models (LLMs). Building on Stocksis, together with a novel integration framework and quantitative tools, we develop FinSphere, an artificial intelligence (AI) agent that generates professional-grade stock analysis reports. Evaluations with AnalyScore show that FinSphere consistently surpasses general-purpose LLMs, domain-specific FinLLMs, and existing agent-based systems, even when the latter are enhanced with real-time data access and few-shot guidance. The findings highlight FinSphere's significant advantages in analytical quality and real-world applicability.
Key words: Large language model (LLM); Instruction-tuned financial LLM; Real-time stock analysis; Evaluation framework and dataset
1哥伦比亚大学工业工程与运筹学系,美国纽约市,10027
2上海财经大学信息管理与工程学院,中国上海市,200433
3九方智投控股有限公司,中国上海市,201702
4约翰斯·霍普金斯大学计算机科学系,美国巴尔的摩市,21218
摘要:当前金融大语言模型(FinLLM)存在两大局限:缺乏股票分析质量的标准化评估指标,以及分析深度不足。我们通过两项创新突破这些局限。首先推出AnalyScore,一套评估股票分析质量的系统化框架;其次构建一个由专家精心筛选的数据集Stocksis,旨在提升大语言模型(LLM)的金融分析能力。基于Stocksis数据集,结合创新集成框架与量化工具,我们开发出FinSphere智能体,可生成专业级股票分析报告。AnalyScore评估表明,FinSphere在分析质量和实际应用能力方面显著优于通用LLM、领域专用金融LLM及现有智能体系统,即便后者配备实时数据访问和少样本指导功能亦然。研究结果凸显了FinSphere在分析质量与现实应用中的显著优势。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.2500414
CLC number:
TP391
Download Full Text:
Downloaded:
155
Download summary:
<Click Here>Downloaded:
29Clicked:
340
Cited:
0
On-line Access:
2025-11-17
Received:
2025-06-15
Revision Accepted:
2025-11-18
Crosschecked:
2025-08-25