Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Almost split sequences for symmetric non-semisimple Hopf algebras

Abstract: We first prove that for a finite dimensional non-semisimple Hopf algebra H, the trivial H-module is not projective and so the almost split sequence ended with k exists. By this exact sequence, for all indecomposable H-module X, we can construct a special kind of exact sequence ending with it. The main aim of this paper is to determine when this special exact sequence is an almost split one. For this aim, we restrict H to be unimodular and the square of its antipode to be an inner automorphism. As a special case, we give an application to the quantum double D(H)=(Hop)*H) of any non-semisimple Hopf algebra.

Key words: Indecomposable, Unimodular, Almost split sequences, Symmetric non-semisimple Hopf algebras


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.2006.A1077

CLC number:

O153.3

Download Full Text:

Click Here

Downloaded:

2629

Clicked:

4603

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE