Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Model for cascading failures in congested Internet

Abstract: Cascading failures often occur in congested networks such as the Internet. A cascading failure can be described as a three-phase process: generation, diffusion, and dissipation of the congestion. In this account, we present a function that represents the extent of congestion on a given node. This approach is different from existing functions based on betweenness centrality. By introducing the concept of ‘delay time’, we designate an intergradation between permanent removal and nonremoval. We also construct an evaluation function of network efficiency, based on congestion, which measures the damage caused by cascading failures. Finally, we investigate the effects of network structure and size, delay time, processing ability and packet generation speed on congestion propagation. Also, we uncover the relationship between the cascade dynamics and some properties of the network such as structure and size.

Key words: Complex network, Cascading failures, Congestion effects, Propagation model


Share this article to: More

Go to Contents

References:

<HIDE>

[1] Albert, R., Jeong, H., Barabási, A.L., 2000. The Internet’s Achilles’ heel: error and attack tolerance of complex networks. Nature, 406(6794):378-382.

[2] Ash, J., Newth, D., 2007. Optimizing complex networks for resilience against cascading failure. Phys. A, 380:673-383.

[3] Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science, 286(5439):509-511.

[4] Bollobás, B., 1985. Random Graphs. Academic Press, London, UK.

[5] Chang, D.B., Young, C.S., 2005. Infection dynamics on the Internet. Comput. Secur., 24(4):280-286.

[6] Cholvi, V., 2006. Dissemination of information in complex networks with congestion. Phys. A, 366:571-577.

[7] Galstyan, A., Cohen, P., 2007. Cascading dynamics in modular networks. Phys. Rev. E, 75:036109.

[8] Motter, A.E., Lai, Y.C., 2002. Cascade-based attacks on complex networks. Phys. Rev. E, 66(6):065102.

[9] Sharma, S., Srivastava, L., 2008. Prediction of transmission line overloading using intelligent technique. Appl. Soft Comput., 8(1):626-633.

[10] Shen, B., Gao, Z.Y., 2008. Dynamical properties of transportation on complex networks. Phys. A, 387(5-6):1352-1360.

[11] Wang, W.X., Chen, G.R., 2008. Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E, 77(2):026101.

[12] Wu, J.J., Gao, Z.Y., Sun, H.J., 2007a. Effects of the cascading failures on scale-free traffic networks. Phys. A, 378(2):505-511.

[13] Wu, J.J., Sun, H.J., Gao, Z.Y., 2007b. Cascading failures on weighted urban traffic equilibrium network. Phys. A, 386(1):407-413.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A0820344

CLC number:

TP393.08

Download Full Text:

Click Here

Downloaded:

2880

Clicked:

5347

Cited:

3

On-line Access:

Received:

2008-05-03

Revision Accepted:

2008-07-28

Crosschecked:

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE