Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Preparation of AlN thin films for film bulk acoustic resonator application by radio frequency sputtering

Abstract: Aluminum nitride (AlN) thin films with high c-axis orientation have been prepared on a glass substrate with an Al bottom electrode by radio frequency (RF) reactive magnetron sputtering. Based on the analysis of Berg’s hysteresis model, the improved sputtering system is realized without a hysteresis effect. A new control method for rapidly depositing highly c-axis oriented AlN thin films is proposed. The N2 concentration could be controlled by observing the changes in cathode voltage, to realize the optimum processing condition where the target could be fixed stably in the transition region, and both stoichiometric film composition and a high deposition rate could be obtained. Under a 500 W RF power of a target with a 6 cm diameter, a substrate temperature of 450 °C, a target-substrate distance of 60 mm and a N2 concentration of 25%, AlN thin film with preferential (002) orientation was deposited at 2.3 μm/h which is a much higher rate than previously achieved. Through X-ray diffraction (XRD) analysis, the full width at half maximum (FWHM) of AlN (002) was shown to be about 0.28°, which shows the good crystallinity and crystal orientation of AlN thin film. With other parameters held constant, any increase or decrease in N2 concentration results in an increase in the FWHM of AlN.

Key words: Aluminum nitride (AlN), Piezoelectric thin film, Radio frequency (RF) reactive sputtering, Preferred orientation, Film bulk acoustic resonator (FBAR)


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A0820572

CLC number:

O484

Download Full Text:

Click Here

Downloaded:

3635

Clicked:

7041

Cited:

3

On-line Access:

Received:

2008-07-29

Revision Accepted:

2008-10-18

Crosschecked:

2008-10-31

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE