Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

A semi-analytical method for the analysis of pile-supported embankments

Abstract: In this paper, a semi-analytical method for the analysis of pile-supported embankments is proposed. The mathematic model describes the cooperative behavior of pile, pile cap, foundation soil, and embankment fills. Based on Terzaghi’s 1D consolidation theory of saturated soil, the consolidation of foundation soil is calculated. The embankments with two different types of piles: floating piles and end-bearing piles are investigated and discussed. The results of axial force and skin friction distributions along the pile and the settlements of pile-supported embankments are presented. It is found that it takes a longer time for soil consolidation in the embankment with floating piles, compared with the case using end-bearing piles. The differential settlement between the pile and surrounding soil at the pile top is larger for the embankment with end-bearing piles, compared with the case of floating piles.

Key words: Pile-supported embankment, Soil arching, Load transfer, Equal settlement plane, Soft soils


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Bian, X.C., Chao, C., Jin, W.F., Chen, Y.M., 2011. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(12):885-894.

[2]British Standard BS8006, 1995. Code of Practice for Strengthened/Reinforced Soils and Other Fills. British Standard Institution, London, UK.

[3]Chen, R.P., Jia, N., Chen, Y.M., 2005a. Mechanism and settlement analysis of pile-supported and geogrid-reinforced embankments. Chinese Journal of Rock Mechanics and Engineering, 24(23):4358-4367 (in Chinese).

[4]Chen, R.P., Zhou, W.H., Wang, H.Z., Chen, Y.M., 2005b. One-dimensional nonlinear consolidation of multi-layered soil by differential quadrature method. Computers and Geotechnics, 32(5):358-369.

[5]Chen, R.P., Zhou, W.H., Cao, W.P., Chen, Y.M., 2007. Improved hyperbolic model of load-transfer for pile-soil interface and its application in study of negative friction of single piles considering time effect. Chinese Journal of Geotechnical Engineering, 29(6):824-830 (in Chinese).

[6]Chen, R.P., Chen, Y.M., Han, J., Xu, Z.Z., 2008. A theoretical solution for pile-supported embankments on soft soils under one-dimensional compression. Canadian Geo-technical Journal, 45(5):611-623.

[7]Chen, R.P., Zhou, W.H., Chen, Y.M., 2009. Influences of soil consolidation and pile load on the development of negative skin friction of a pile. Computers and Geotechnics, 36(8):1265-1271.

[8]Chen, Y.M., Cao, W.P., Chen, R.P., 2008. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotextiles and Geomembranes, 26(2):164-174.

[9]Han, J., Gabr, M.A., 2002. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 128(1):44-53.

[10]Low, B.K., Tang, S.K., Choa, V., 1993. Arching in piled embankments. Journal of Geotechnical and Geoenviron- mental Engineering, 120(11):1917-1938.

[11]Magnan, J.P., 1994. Methods to Reduce the Settlement of Embankments on Soft Clay: A Review. In: Yeung, A.T., Félio, G.Y. (Eds.), Vertical and Horizontal Deformations of Foundations and Embankments, p.77-91.

[12]Russell, D., Pierpoint, N., 1997. An assessment of design methods for piled embankments. Ground Engineering, 30(10):39-44.

[13]Randolph, M.F., Worth, C.P., 1978. Analysis of deformation of vertically loaded piles. Journal of Geotechnical Engineering Division, 104(12):1465-1488.

[14]Shen, S.L., Chai, J.C., Hong, Z.S., Cai, F.X., 2005. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Journal of Geotextiles and Geomembranes, 23(6):463-485.

[15]Terzaghi, K., 1943. Theoretical of Soil Mechanics. John Wiley and Sons, New York.

[16]Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice (2nd Edition). Wiley, New York.

[17]Zhou, W.H., Yin, J.H., 2008. A simple mathematical model for soil nail and soil interaction analysis. Computers and Geotechnics, 35(3):479-488.

[18]Zhou, W.H., Chen, R.P., Chen, Y.M., 2006. Development of Negative Skin Friction of Piles on Soft Ground. Proceedings of the GeoShanghai Conference on Foundation Analysis and Design: Innovative Methods, GSP 153.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A12ISGT4

CLC number:

TU4

Download Full Text:

Click Here

Downloaded:

3711

Clicked:

5813

Cited:

10

On-line Access:

2012-10-25

Received:

2012-09-07

Revision Accepted:

2012-09-17

Crosschecked:

2012-09-07

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE