Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal

Abstract: Die-less spinning eliminates the dependence upon the mandrel of traditional spinning, but bringing about comparatively poor dimensional accuracy which needs to be improved. In this paper, roller paths in the first pass of die-less spinning, including concave, convex, linear and combined ones are parameterized according to the degree of bending and their effects on dimensional precision (thickness variation and shape deviation) have been studied by using experiments of finite element (FE) analysis. The effects of roller paths on thickness variation, shape deviation, tool forces, and stress and strain variations have been analyzed numerically. The results showed that for concave roller paths, the thickness variation is not very sensitive to the degree of bending, while a low degree of bending of the roller path can result in a low shape deviation. For convex roller paths, a low degree of bending leads to both low thickness reduction and low shape deviation. Further research shows that a combined roller path with convex-concave curve could contribute a low shape deviation, while an inverse combined roller path gives better thickness precision.

Key words: Sheet metal, Die-less spinning, Roller paths, Dimensional precision, Tool forces

Chinese Summary  <39> 无芯模旋压旋轮轨迹曲线对其成形精度影响的仿真研究

研究目的:验证无芯模旋压工艺可行性,同时深入探究此新型工艺机理,研究并获取旋轮轨迹曲线参数化控制及其对于零件成形精度的影响趋势。
创新要点:基于贝塞尔曲线实现对于无芯模旋压旋轮轨迹曲线的参数化控制;通过构建包括成形与回弹工艺过程的无芯模旋压仿真模型,研究参数化轨迹曲线对成形件壁厚及形状精度的影响趋势及关系,同时对成形过程变形区应力应变进行了深入探究分析。
研究方法:1. 基于三次贝塞尔曲线实现对于旋轮轨迹曲线的拟合以及参数化控制(图3);2. 利用LS-DYNA软件实现对无芯模旋压成形及回弹工艺综合仿真及其过程、结果数据的提取; 3. 研究不同参数化轨迹曲线下成形件壁厚及形状精度变化趋势(图12和13),获取量化轨迹曲线对于零件成形精度影响关系(表3),并通过增加实验组验证所获关系模型; 4. 提取成形过程中及成形后板料变形区应力及应变数据(图14–19),深入探究上述变形机理。
重要结论:凹轨迹曲线下,坯料中部出现最大减薄及变形程度,且降低曲线曲率,形状精度提高;凸轨迹曲线下,最大减薄及变形区域出现在坯料后部,且降低曲线曲率,壁厚及形状精度均提高。

关键词组:金属板料;无芯模;旋压;旋轮轨迹;形状精度


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Chen, M.D., Hsu, R.Q., Fuh, K.H., 2001. Forecast of shear spinning force and surface roughness of spun cones by employing regression analysis. International Journal of Machine Tools & Manufacture, 41(12):1721-1734.

[2]Essa, K., Hartley, P., 2010. Optimization of conventional spinning process parameters by means of numerical simulation and statistical analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

[3]Engineering Manufacture, 224(11):1691-1705.

[4]Gao, C.Y., Fang, Y.T., 2005. Investigation on the factors influencing the thickness distribution of superplastic- formed components. Journal of Zhejiang University- SCIENCE A, 6(7):711-715.

[5]Hayama, M., Kudo, H., Shinodura, T., 1970. Study of the pass schedule in conventional simple spinnning. Bulletin of JSME, 13(65):1358-1365.

[6]Kang, D.C., Gao, X.C., Meng, X.F., et al., 1999. Study on the deformation mode of conventional spinning of plates. Journal of Materials Processing Technology, 91(1-3):226-230.

[7]Kawai, K., Yang, L.N., Kudo, H., 2001. A flexible shear spinning of truncated conical shells with a general- purpose mandrel. Journal of Materials Processing Technology, 113(1-3):28-33.

[8]Kawai, K., Yang, L.N., Kudo, H., 2007. A flexible shear spinning of axi-symmetrical shells with a general-purpose mandrel. Journal of Materials Processing Technology, 192-193:13-17.

[9]Li, Y., Wang, J., Lu, G.D., et al., 2013. Three-dimensional finite element analysis of effects of roller intervals on tool forces and wall thickness in stagger spinning of thin-walled tube. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(7):1429-1440.

[10]Liu, J.H., Yang, H., Li, Y.Q., 2002. A study of the stress and strain distribution of first-pass conventional spinning under different roller-traces. Journal of Materials Processing Technology, 129(1-3):326-329.

[11]LSTC, 2008. LS-DYNA Keyword User’s Manual. Version 971. Livermore Software Technology Corporation, Livermore, USA.

[12]Matsubara, S., 2001. A computer numerically controlled dieless incremental forming of a sheet metal. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(7):959-966.

[13]Music, O., Allwood, J.M., Kawai, K., 2010. A review of the mechanics of metal spinning. Journal of Materials Processing Technology, 210(1):3-23.

[14]Quigley, E., Monaghan, J., 2000. Metal forming: an analysis of spinning processes. Journal of Materials Processing Technology, 103(1):114-119.

[15]Runge, M., 1994. Spinning and Flow Forming (translated by Pollitt, D.H.). Leifeld GmbH, Ahlen, Germany.

[16]Sekiguchi, A., Arai, H., 2012. Control of wall thickness distribution by oblique shear spinning methods. Journal of Materials Processing Technology, 212(4):786-793.

[17]Wang, L., Long, H., 2011a. Investigation of material deformation in multi-pass conventional metal spinning. Materials & Design, 32(5):2891-2899.

[18]Wang, L., Long, H., 2011b. A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning. Journal of Materials Processing Technology, 211(12):2140-2151.

[19]Wang, L., Long, H., Ashley, D., et al., 2011. Effects of the roller feed ratio on wrinkling failure in conventional spinning of a cylindrical cup. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(11):1991-2006.

[20]Wong, C.C., Dean, T.A., Lin, J., 2003. A review of spinning, shear forming and flow forming processes. International Journal of Machine Tools and Manufacture, 43(14):1419-1435.

[21]Xie, Y., Yu, H., Chen, J., et al., 2007. Application of grey relational analysis in sheet metal forming for multi- response quality characteristics. Journal of Zhejiang University-SCIENCE A, 8(5):805-811.

[22]Zhang, J., Zhan, M., Yang, H., et al., 2012. 3D-FE modeling for power spinning of large ellipsoidal heads with variable thicknesses. Computational Materials Science, 53(1):303-313.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1300405

CLC number:

TG306; TH162+.1

Download Full Text:

Click Here

Downloaded:

3963

Download summary:

<Click Here> 

Downloaded:

1841

Clicked:

8243

Cited:

9

On-line Access:

2014-06-04

Received:

2013-12-23

Revision Accepted:

2014-05-06

Crosschecked:

2014-05-21

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE