Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Optimal sensor placement for space modal identification of crane structures based on an improved harmony search algorithm

Abstract: The problem of optimal sensor placement plays a key role in the success of structural health monitoring (SHM) systems. In this study, a new method is presented to investigate the optimization problem of sensor placement on gantry crane structures. The method is a combination of an improved harmony search (HS) algorithm and the modal assurance criterion (MAC). Firstly, we review previous studies on setting reasonable values for HS parameters that have the most impact on the result, and highlight the lack of general rules governing this aspect. Based on more efficient HS algorithms resulting from those studies, we apply our proposed technique to the optimization problem of sensor placement on gantry crane structures. The purpose of the optimization method is to select the optimal sensor locations on gantry crane girders to establish a sensor network for an SHM system. Our results show that the HS algorithm is a powerful search and optimization technique that can lead to a better solution to the problem of engineering optimization. The mode of a crane structure could be identified more easily when different mode shape orientations are considered comprehensively.

Key words: Harmony search (HS) algorithm, Optimal sensor placement, Gantry crane, Modal assurance criterion (MAC), Structural health monitoring (SHM)

Chinese Summary  <37> 基于改进和声搜索算法识别门式起重机结构空间模态的传感器优化布置方法研究

目的:采用一种新型改进的和声搜索算法,对基于空间模态识别的传感器布置的优化方法进行研究。根据对门式起重机结构动力特性研究,得到更为理想的测点布置方案和优化结果。
创新点:1.研究和声搜索算法的参数合理取值范围,提高计算效率;2.利用和声搜索算法结合模态置信度准则对起重机梁的空间模态识别进行研究,提出测点布置的合理优化方案。
方法:1.基于一种改进的和声搜索算法与模态置信度准则相结合的方法对最优的传感器布置方案进行研究,通过建立的评估函数对优化得到的布置方案进行评估比较,得到近似最优的测点位置和传感器数目;2.结合门式起重机结构的动力学特性研究结果,对其在二维和三维空间的振动模态分别进行研究比较,得到更为理想的优化布置方案。
结论:1.和声搜索算法具有程序实现简单和搜索能力较强的优点,本研究得到了其参数的合理取值范围,提高了其优化搜索的能力;2.研究得到了较为理想的测点位置和合理的传感器数目;3.根据起重机结构的动力特性,考虑其空间模态可得到更为理想的优化方案和识别能力。

关键词组:和声搜索算法;优化传感器布置;门式起重机;模态置信度准则;结构健康监测


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Alia, O.M., Mandava, R., 2011. The variants of the harmony search algorithm: an overview. Artificial Intelligence Review, 36(1):49-68.

[2]Allemang, R.J., Brown, D.L., 1982. Correlation coefficient for modal vector analysis. Proceedings of the 1st International Modal Analysis Conference, Orlando, USA, p.110-116.

[3]Brehm, M., Zabel, V., Bucher, C., 2013. Optimal reference sensor positions using output-only vibration test data. Mechanical Systems and Signal Processing, 41(1-2):196-225.

[4]Bruggi, M., Mariani, S., 2013. Optimization of sensor placement to detect damage in flexible plates. Engineering Optimization, 45(6):659-676.

[5]Carne, T.G., Dohrmann, C.R., 1995. A modal test design strategy for modal correlation. The 13th International Modal Analysis Conference, Nashville, USA, p.927-933.

[6]Chen, H.Y., Zhu, L.B., Huang, X., et al., 2012. Structural health monitoring system of gantry crane based on ZigBee technology. Proceedings of the 3nd International Conference on Digital Manufacturing & Automation, Guilin, China, p.801-804.

[7]Cobb, R.G., Liebst, B.S., 1997. Sensor placement and structural damage identification from minimal sensor information. AIAA Journal, 35(2):369-374.

[8]CRANESInspect, 2014. What is the CRANESInspect? Available from http://www.cranesinspect.eu/node/5 [Accessed on May 10, 2014].

[9]Ding, K.Q., Wang, Z.J., Lina, et al., 2012. Structural health monitoring system for the crane based on Bragg grating sensors. 18th World Conference on Nondestructive Testing, Durban, South Africa, p.16-20.

[10]Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., et al., 2008. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering, 197(33-40):3080-3091.

[11]Garcia-Perez1, A., Amezquita-Sanchez, J.P., Dominguez-Gonzalez, A., et al., 2013. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(9):615-630.

[12]Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001. A new heuristic optimization algorithm: harmony search. Simulation, 76(2):60-68.

[13]Guyan, R.J., 1965. Reduction of stiffness and mass matrices. AIAA Journal, 3(2):380-380.

[14]Kammer, D.C., 1991. Sensor placements for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control, and Dynamics, 14(2):251-259.

[15]Kim, H.B., Park, Y.S., 1997. Sensor placement guide for structural joint stiffness model improvement. Mechanical Systems and Signal Processing, 11(5):651-672.

[16]Lee, K.S., Geem, Z.W., 2004. A new structural optimization method based on the harmony search algorithm. Computers and Structures, 82(9-10):781-798.

[17]Lee, K.S., Geem, Z.W., 2005. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36-38):3902-3933.

[18]Li, B.B., 2012. Information Theoretic Optimal Sensor Placement in Structure Health Monitoring. MS Thesis, Dalian University of Technology, China (in Chinese).

[19]Li, G., Qin, Q., Dong, C., 2000. Optimal placement of sensors for monitoring systems on suspension bridges by using genetic algorithms. Engineering Mechanics, 17(1):25-34 (in Chinese).

[20]Li, L., Chi, S.C., Lin, G., 2006. Improved harmonic search algorithm and its application to soil slope stability analysis. China Civil Engineering Journal, 39(5):107-111 (in Chinese).

[21]Lian, J.J., He, L.J., Ma, B., et al., 2013. Optimal sensor placement for large structures using the nearest neighbour index and a hybrid swarm intelligence algorithm. Smart Materials and Structures, 22(9):095015.

[22]Ma, G., Huang, F.L., Wang, X.M., 2007. An optimal approach to the placement of sensors in structural health monitoring based on hybrid genetic algorithm. 2nd International Conference on Structural Condition Assessment, Monitoring and Improvement, Changsha, China, p.929-934.

[23]Manjarres, D., Landa-Torres, I., Gil-Lopez, S., et al., 2013. A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8):1818-1831.

[24]Papadimitriou, C., Lombaert, G., 2012. The effect of prediction error correlation on optimal sensor placement in structural dynamics. Mechanical Systems and Signal Processing, 28:105-127.

[25]Pei, W., 2010. Research of Gantry Crane Health Monitoring Experiment System Based on Option Fiber Gratin. MS Thesis, North University of China, China (in Chinese).

[26]Salama, M., Rose, T., Garba, J., 1987. Optimal placement of excitations and sensors for verification of large dynamical systems. Proceedings of the 28th AIAA/ASME Structure, Structure Dynamics, and Materials Conference, Monterey, USA, p.1024-1031.

[27]Shi, Z.Y., Law, S.S., Zhang, L.M., 2000. Optimum sensor placement for structural damage detection. Journal of Engineering Mechanics, 126(11):1173-1179.

[28]van der Linden, G.W., Emami-Naeini, A., Kosut, R.L., et al., 2010. Near-optimal sensor placement for health monitoring of civil structures. Conference on Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security, San Diego, USA.

[29]Zhang, G.F., 2005. Optimal Sensor Localization Selection in a Diagnostic Prognostic Architecture. PhD Thesis, Georgia Institute of Technology, Atlanta, USA.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1400363

CLC number:

TU391

Download Full Text:

Click Here

Downloaded:

2879

Download summary:

<Click Here> 

Downloaded:

2107

Clicked:

4883

Cited:

5

On-line Access:

2015-06-04

Received:

2014-12-22

Revision Accepted:

2015-04-12

Crosschecked:

2015-05-07

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE