Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Effect of case drain pressure on slipper/swashplate pair within axial piston pump

Abstract: This paper pertains to case drain pressure limitation for axial piston swashplate pumps used in open-loop circuits. The critical case drain pressure for pumps of this type is considered from the oil film perspective of the slipper/swashplate pair: (1) height of the lubricating oil film, (2) supporting stiffness, and (3) location of the centroid of the equivalent hydrodynamic lifting force. A dynamic lubricating oil film simulation model is established to determine the critical case drain pressure for which the slipper cannot remain in a stable state. Based on the simulation results, the worst condition occurs at the point when the height of the lubricating oil film is the maximum, the supporting stiffness is the minimum, and the distance between the centroid of the equivalent hydrodynamic lifting force and the bottom center of the slipper is the maximum. The slipper is stable only when the difference between the case drain pressure and the suction pressure is within a reasonable range. Subsequently, a design criterion is put forward to specify the reasonable case drain pressure, and this is validated by experimental results.

Key words: Axial piston pump, Slipper/swashplate pair, Case drain pressure, Oil film

Chinese Summary  <40> 壳体压力对轴向柱塞泵滑靴副特性的影响

目的:旨在探索壳体压力对滑靴副特性的影响,期望给出特定泵结构和工况下极限壳体压力的确定准则,提高滑靴运行的可靠性。
创新点:1. 基于滑靴平衡方程,推导出滑靴支撑力等效半径与工况之间的关系;2. 得出离散油膜刚度计算公式;3. 给出评价准则,确定极限壳体压力。
方法:1. 基于滑靴副油膜模型分析不同进口压力和壳体压力对滑靴副油膜厚度、滑靴倾覆角度、油膜刚度和动压支撑力等效作用半径的影响;2. 以动压支撑力等效作用半径小于滑靴外径为评价标准确定泵极限壳体压力。
结论:1. 给定泵结构和工况条件下,油膜厚度和滑靴倾覆角度随着壳体压力的增大而增大;2. 壳体压力增大,高低压过渡区支撑刚度降低,等效动压支撑力作用点向滑靴外缘移动;3. 基于油膜模型提出的壳体压力确定准则可以有效的确定极限壳体压力。

关键词组:轴向柱塞泵;滑靴副;壳体压力;油膜


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A1500182

CLC number:

TH137; TP211+.3

Download Full Text:

Click Here

Downloaded:

3732

Download summary:

<Click Here> 

Downloaded:

2013

Clicked:

4607

Cited:

4

On-line Access:

2015-12-04

Received:

2015-06-17

Revision Accepted:

2015-08-10

Crosschecked:

2015-11-10

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE