|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2017 Vol.18 No.9 P.728-740
Effects of a variety of cutting fluids administered using the minimum quantity lubrication method on the surface grinding process for nickel-based alloys
Abstract: This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes the features that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions, especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and the results of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influence of the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values and surface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL® alloy 600, and MONEL® alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results of the machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advantageous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to the results when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specific tangential grinding force Ft′ and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel 201 and INCONEL® alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changes of the grinding conditions within the conventionally selected zones.
Key words: Nickel-based alloys; Surface grinding; Minimum quantity lubrication; Hard-to-cut materials; Grinding force; Surface roughness
创新点:通过实验比较2种磨削液对3种镍基合金工件磨削结果的不同影响,为在采用微量润滑方法时的磨削液合理选择提供有益借鉴,也为绿色制造、可持续生产或清洁生产等制造技术的发展提供技术支撑。
方法:1. 对每个试件表面进行多行程无火花磨削预处理,并采用浇注式冷却;2. 进行单程磨削实验(图2),并采用微量润滑方法进行冷却;3. 在磨削表面标记3个区域,比较在不同磨削液、工件材料及砂轮结构条件下,每个区域平均切向力和表面粗糙度值的变化情况。
结论:1. 磨削表面粗糙度与磨削切向力成反比,Nickel 201和INCONEL(r) 600的表现尤为明显。2.不同的镍基合金材料工件磨削时的切向力和表面粗糙度有很大不同,MONEL(r) 400获得的磨削效果最好。3. 初始单程磨削实验方法可以用来评价砂轮切入3个磨削区磨削状态的异同;不同磨削区域的磨削结果差异较大。4. Biocut 3000 磨削液可以获得比Ecocut Mikro Plus 82磨削液更好的磨削表面,但磨削力也相应增大。5. 砂轮结构的不同对磨削结果没有太大影响。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A1600416
CLC number:
TH161
Download Full Text:
Downloaded:
3572
Clicked:
6373
Cited:
1
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-08-15