Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Discrete element method study of hysteretic behavior and deformation characteristics of rockfill material under cyclic loading

Abstract: Granular geomaterials under different loading conditions manifest various behaviors, such as hysteresis. Understanding their hysteretic behavior and deformation characteristics is the basis for establishing a constitutive relation with excellent performance in deformation prediction. The deformation characteristics of crushable particle materials are analyzed through a series of cyclic loading tests conducted by numerical simulation. The hysteretic behavior is investigated from a particle scale. The increase in particles with contacts less than two may be responsible for the residual strain, and the particle breakage further promotes particle rearrangement and volume contraction. Both the accumulation of plastic strain and the resilient modulus are found to be related to confining pressures, stress levels, cyclic loading amplitudes, and the number of cycles. The plastic strain accumulation can be written as a function of the number of cycles and an evolution function of resilient modulus is proposed.

Key words: Granular material; Discrete element method (DEM); Plastic deformation; Cyclic loading; Hysteretic behavior

Chinese Summary  <24> 循环荷载作用下堆石料滞回行为及变形特性离散元研究

作者:林明春1,2,王观琪3,周剑4,周伟1,2,安妮1,2,马刚1,2
机构:1武汉大学,水资源与水电工程科学国家重点实验室,中国武汉,430072;2武汉大学,水工程科学研究院,中国武汉,430072;3中国电建集团成都勘测设计研究院有限公司,中国成都,610072;4中国电建集团昆明勘测设计研究院有限公司,中国昆明,650051
目的:岩土颗粒材料在不同加载条件下表现出复杂的力学行为,如滞回性。理解和掌握其滞回行为及变形特性是建立具有良好变形预测能力的本构关系的基础。本文旨在研究循环荷载下堆石料的变形特性,分析试样产生残余变形的原因及导致加卸载滞回圈逐渐重合的细观机理,研究不同加载条件(围压、应力水平、加卸载幅度和循环次数)对回弹模量的影响,为建立适用于堆石料的本构关系提供理论指导。
创新点:1.分析循环荷载下堆石料试样产生残余变形的原因,揭示导致加卸载条件下应力滞回圈逐渐靠近并重合的细观机理;2.提出综合考虑围压、应力水平和加卸载幅度影响的回弹模量函数表达式。
方法:1.采用离散元数值模拟方法对堆石料细观模拟参数进行率定,并开展不同加载条件的循环加卸载数值试验(图6和12);2.研究循环作用下颗粒配位数、孔隙率及颗粒破碎行为,并分析产生残余变形的原因及导致加卸载滞回圈逐渐重合的细观机理(图9);3.研究不同围压、应力水平、加卸载幅度和加卸载循环次数对塑性应变累积及回弹模量的影响,并提出考虑不同加载条件的回弹模量表达式(公式(14))。
结论:1.循环荷载条件下堆石料宏观应力和体变存在滞回行为,且与围压、应力水平、加卸载幅度和循环次数密切相关。2.堆石料试样中无承载能力的颗粒的数量随循环荷载逐渐增加是产生残余应变的原因;孔隙率随循环次数增加呈缓慢变化并逐渐稳定,在宏观上反映为滞回圈逐渐重合。3.根据围压、应力水平及加卸载幅度对塑性应变累积及回弹模量的影响,提出了综合考虑不同加载条件影响的回弹模量表达式。

关键词组:颗粒材料;离散元方法;塑性变形;循环荷载;滞回行为


Share this article to: More

Go to Contents

References:

<HIDE>

[1]AiJ, ChenJF, RotterJM, et al., 2011. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 206(3):269-282.

[2]AthanassiadisAG, MiskinMZ, KaplanP, et al., 2014. Particle shape effects on the stress response of granular packings. Soft Matter, 10(1):48-59.

[3]BagiK, 1996. Stress and strain in granular assemblies. Mechanics of Materials, 22(3):165-177.

[4]BelheineN, PlassiardJP, DonzéFV, et al., 2009. Numerical simulation of drained triaxial test using 3D discrete element modeling. Computers and Geotechnics, 36(1-2):320-331.

[5]Ben-NunO, EinavI, 2010. The role of self-organization during confined comminution of granular materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910):231-247.

[6]BorkovecM, de ParisW, PeikertR, 1994. The fractal dimension of the Apollonian sphere packing. Fractals, 2(4):‍521-526.

[7]CaiYQ, SunQ, GuoL, et al., 2015. Permanent deformation characteristics of saturated sand under cyclic loading. Canadian Geotechnical Journal, 52(6):795-807.

[8]ChenSS, FuZZ, WeiKM, et al., 2016. Seismic responses of high concrete face rockfill dams: a case study. Water Science and Engineering, 9(3):195-204.

[9]ChenY, MaG, ZhouW, et al., 2021. An enhanced tool for probing the microscopic behavior of granular materials based on X-ray micro-CT and FDEM. Computers and Geotechnics, 132:103974.

[10]CiantiaMO, ArroyoM, CalvettiF, et al., 2015. An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique, 65(2):91-110.

[11]CoopMR, SorensenKK, FreitasTB, et al., 2004. Particle breakage during shearing of a carbonate sand. Géotechnique, 54(3):157-163.

[12]DahalB, MishraD, 2020. Discrete element modeling of permanent deformation accumulation in railroad ballast considering particle breakage. Frontiers in Built Environment, 5:145.

[13]de BonoJ, McDowellG, 2016. Particle breakage criteria in discrete-element modelling. Géotechnique, 66(12):‍1014-1027.

[14]DuncanJM, ChangCY, 1970. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5):1629-1653.

[15]EinavI, 2007. Breakage mechanics—part I: theory. Journal of the Mechanics and Physics of Solids, 55(6):1274-1297.

[16]EstradaN, AzémaE, RadjaiF, et al., 2011. Identification of rolling resistance as a shape parameter in sheared granular media. Physical Review E, 84(1):011306.

[17]FuZZ, ChenSS, HanHQ, 2017. Experimental investigations on the residual strain behavior of a rockfill material subjected to dynamic loading. Journal of Materials in Civil Engineering, 29(5):04016278. https://doi.‍org/10.1061/%‍28ASCE%‍29MT.‍1943-5533. 0001816

[18]GuC, ZhanY, WangJ, et al., 2020. Resilient and permanent deformation of unsaturated unbound granular materials under cyclic loading by the large-scale triaxial tests. Acta Geotechnica, 15(12):3343-3356.

[19]HarirecheO, McDowellGR, 2003. Discrete element modelling of cyclic loading of crushable aggreates. Granular Matter, 5(3):147-151.

[20]HuangQS, ZhouW, MaG, et al., 2020. Experimental and numerical investigation of Weibullian behavior of grain crushing strength. Geoscience Frontiers, 11(2):401-411.

[21]IndraratnaB, ThakurPK, VinodJS, 2010. Experimental and numerical study of railway ballast behavior under cyclic loading. International Journal of Geomechanics, 10(4):136-144. https://doi.‍org/10.1061/%‍28ASCE%‍29GM.‍1943-5622. 0000055

[22]Itasca Consulting Group Inc., 2014. Particle Flow Code in 3 Dimensions (PFC3D), Version 5.0. Itasca Consulting Inc., Minneapolis, USA, p.2199-2216.

[23]IwashitaK, OdaM, 1998. Rolling resistance at contacts in simulation of shear band development by DEM. Journal of Engineering Mechanics, 124(3):285-292.

[24]IwashitaK, OdaM, 2000. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 109(1-3):192-205.

[25]JanbuN, 1963. Soil compressibility as determined by oedometer and triaxial tests. Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, p.19-25.

[26]JiangMJ, ZhangA, LiT, 2019. Distinct element analysis of the microstructure evolution in granular soils under cyclic loading. Granular Matter, 21(2):39.

[27]JinZ, LuZ, YangY, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):882-893.

[28]LeeDM, 1992. The Angles of Friction of Granular Fills. PhD Thesis, University of Cambridge, Cambridge, UK.

[29]LiXM, LiHW, ZhengMS, et al., 2016. Research on particle breakage of rockfill material based on modified Duncan-Chang model. Chinese Journal of Rock Mechanics and Engineering, 35(S1):2695-2701 (in Chinese).

[30]LinMC, ZhouW, LiuJY, et al., 2022. A topological view on microscopic structural evolution for granular material under loading and unloading path. Computers and Geotechnics, 141:104530.

[31]LiuH, XiaoJL, WangP, et al., 2018. Experimental investigation of the characteristics of a granular ballast bed under cyclic longitudinal loading. Construction and Building Materials, 163:214-224.

[32]LiuHB, ZouDG, LiuJM, 2014. Constitutive modeling of dense gravelly soils subjected to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 38(14):1503-1518.

[33]LiuYM, LiuHB, MaoHJ, 2018. The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granular Matter, 20(1):12.

[34]Lobo-GuerreroS, VallejoLE, 2006. Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granular Matter, 8(3):195-204.

[35]LuM, McDowellGR, 2007. The importance of modelling ballast particle shape in the discrete element method. Granular Matter, 9(1):69-80.

[36]MaG, RegueiroRA, ZhouW, et al., 2018. Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotechnica, 13(3):601-618.

[37]MaG, ChenY, YaoFH, et al., 2019. Evolution of particle size and shape towards a steady state: insights from FDEM simulations of crushable granular materials. Computers and Geotechnics, 112:147-158.

[38]MarsalRJ, 1967. Large scale testing of rockfill materials. Journal of the Soil Mechanics and Foundations Division, 93(2):27-43.

[39]McDowellGR, BoltonMD, 1998. On the micromechanics of crushable aggregates. Géotechnique, 48(5):667-679.

[40]MWR (Ministry of Water Resources of the People’s Republic of China), 1999. Specification of Soil Test, SL 237-1999. National Standards of the People’s Republic of China(in Chinese).

[41]O’SullivanC, CuiL, O’NeillSC, 2008. Discrete element analysis of the response of granular materials during cyclic loading. Soils and Foundations, 48(4):511-530.

[42]PotyondyDO, CundallPA, 2004. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8):1329-1364.

[43]SantosAP, BolintineanuDS, GrestGS, et al., 2020. Granular packings with sliding, rolling, and twisting friction. Physical Review E, 102(3):032903.

[44]SazzadM, 2014. Micro-scale behavior of granular materials during cyclic loading. Particuology, 16:132-141.

[45]SazzadM, SuzukiK, 2010. Micromechanical behavior of granular materials with inherent anisotropy under cyclic loading using 2D DEM. Granular Matter, 12(6):597-605.

[46]SazzadM, SuzukiK, 2011. Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. Journal of Geotechnical and Geoenvironmental Engineering, 137(5):545-549. https://doi.‍org/10.1061/%‍28ASCE%‍29GT.‍1943-5606.0000441

[47]ScaioniM, MarsellaM, CrosettoM, et al., 2018. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors, 18(11):3682.

[48]SkrzypkowskiK, 2020. Decreasing mining losses for the room and pillar method by replacing the inter-room pillars by the construction of wooden cribs filled with waste rocks. Energies, 13(14):3564.

[49]SkrzypkowskiK, 2021. Determination of the backfilling time for the zinc and lead ore deposits with application of the BackfillCAD model. Energies, 14(11):3186.

[50]SunQD, IndraratnaB, NimbalkarS, 2014. Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast. Géotechnique, 64(9):‍746-751.

[51]TapiasM, AlonsoEE, GiliJ, 2015. A particle model for rockfill behaviour. Géotechnique, 65(12):975-994.

[52]ThorntonC, 2000. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1):‍43-53.

[53]UengTS, ChenTJ, 2000. Energy aspects of particle breakage in drained shear of sands. Géotechnique, 50(1):65-72.

[54]WeiJT, HuangDR, WangG, 2020. Fabric evolution of granular soils under multidirectional cyclic loading. Acta Geotechnica, 15(9):2529-2543.

[55]WensrichCM, KatterfeldA, 2012. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 217:409-417.

[56]XiaPX, ShaoLT, DengW, 2021. Mechanism study of the evolution of quasi-elasticity of granular soil during cyclic loading. Granular Matter, 23(4):84.

[57]XiaoY, LiuH, ZhangWG, et al., 2016. Testing and modeling of rockfill materials: a review. Journal of Rock Mechanics and Geotechnical Engineering, 8(3):415-422.

[58]XiaoY, MengMQ, DaouadjiA, et al., 2020. Effects of particle size on crushing and deformation behaviors of rockfill materials. Geoscience Frontiers, 11(2):375-388.

[59]XuK, ZhouW, MaG, 2020. Influence of particle breakage on scale effect of filling characteristics of rockfill material. Chinese Journal of Geotechnical Engineering, 42(6):1013-1022 (in Chinese).

[60]YinZY, JinYF, ZhangX, 2021. Large deformation analysis in geohazards and geotechnics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):851-855.

[61]YuanWH, WangHC, LiuK, et al., 2021. Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):909-923.

[62]ZhangD, LiQM, LiuEL, et al., 2019. Dynamic properties of frozen silty soils with different coarse-grained contents subjected to cyclic triaxial loading. Cold Regions Science and Technology, 157:64-85.

[63]ZhangH, JingYL, ChenJK, et al., 2022. Characteristics and causes of crest cracking on a high core-wall rockfill dam: a case study. Engineering Geology, 297:106488.

[64]ZhangLK, WangR, ZhangJM, et al., 2019. Experimental study on dynamic deformation characteristics of rockfill materials under different stress paths. Engineering Mechanics, 36(3):114-120.

[65]ZhaoSW, EvansTM, ZhouXW, 2018. Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. International Journal of Solids and Structures, 150:268-281.

[66]ZhouB, KuQ, LiCH, et al., 2022. Single-particle crushing behaviour of carbonate sands studied by X-ray microtomography and a combined finite–discrete element method. Acta Geotechnica, 17(8):3195-3209.

[67]ZhouW, LiSL, MaG, et al., 2016a. Assessment of the crest cracks of the Pubugou rockfill dam based on parameters back analysis. Geomechanics and Engineering, 11(4):571-585.

[68]ZhouW, LiSL, MaG, et al., 2016b. Parameters inversion of high central core rockfill dams based on a novel genetic algorithm. Science China Technological Sciences, 59(5):783-794.

[69]ZhouW, YangLF, MaG, et al., 2017. DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granular Matter, 19(2):25.

[70]ZhouW, XuK, MaG, et al., 2019. On the breakage function for constructing the fragment replacement modes. Particuology, 44:207-217.

[71]ZhouW, WangD, MaG, et al., 2020. Discrete element modeling of particle breakage considering different fragment replacement modes. Powder Technology, 360:312-323.

[72]ZouYX, MaG, MeiJZ, et al., 2022. Microscopic origin of shape-dependent shear strength of granular materials: a granular dynamics perspective. Acta Geotechnica, 17(7):2697-2710.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2200286

CLC number:

Download Full Text:

Click Here

Downloaded:

1139

Download summary:

<Click Here> 

Downloaded:

479

Clicked:

1845

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2023-03-31

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE