Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Enhanced photocatalytic performance of S-doped covalent triazine framework for organic pollutant degradation

Abstract: Photocatalysis using the abundant solar energy is an environmentally friendly and efficient way to degrade organic matter. Covalent triazine frameworks (CTFs), a new class of metal-free organic semiconductors responsive to visible light, are promising materials for water treatment. In this study, an original CTF, namely CTF-1, was modified by S-doping to form CTFSx, which were used as metal-free catalysts for degradation of methyl orange (MO) and bisphenol A (BPA). The outcomes demonstrated that the photocatalytic degradation of MO and BPA by CTFSx was superior to that by CTF-1, with better stability and reusability. Within 6 h, 53.2% MO and 84.7% BPA were degraded by CTFS5, and the degradation rate constants were 0.145 h-1 and 0.29 h-1, respectively, which were 3.6 and 5.8 times higher than those of CTF-1. Further investigation revealed that enhanced visible light absorption, a reduced degree of free carrier recombination, rapid separation and transfer of photogenerated electrons and holes, and improved ·OH oxidation capacity were important factors contributing to the significantly enhanced photocatalytic activity. The S-doping method effectively improved the light absorption performance, electronic structure, and modulation band structure of CTF-1. This work highlights the potential application of low-cost metal-free catalysts driven by visible light for the removal of organic pollutants from wastewater.

Key words: Covalent triazine frameworks (CTFs); Photocatalysis; S-doping; Organic pollutant removal

Chinese Summary  <496> 利用多样品标记单细胞转录组分析技术表征猴多能干细胞

李爽1,3,陈枕枕1,3,陈传鑫1,4,5,牛昱宇1,2,3
1昆明理工大学, 省部共建非人灵长类生物医学国家重点实验室, 中国昆明市, 650500
2昆明理工大学生命科学与技术学院, 中国昆明市, 650500
3云南省灵长类生物医学重点实验室, 中国昆明市, 650500
4生物岛实验室, 中国广州市, 510005
5广州国家实验室, 中国广州市, 510005
摘要:尽管人们已经开发了多种构建人类多能干细胞的方法,但这些方法仍未应用在非人灵长类细胞中。在本文中,我们利用多样品标记单细胞测序技术对不同培养条件下的猴多能干细胞进行了分子特征的表征。结果表明,虽然用于重置人类干细胞的信号通路可以用来构建猴干细胞系,但其配方有待优化才能更好地维持猴干细胞多能性。总而言之,本研究证实了新型的人类干细胞培养体系可以转化到猴干细胞体系中,这对于未来猴干细胞系培养配方的探索具有指导意义。

关键词组:猴多能干细胞;多样品标记单细胞测序;原始态多能性;拓展多能性干细胞


Share this article to: More

Go to Contents

References:

<HIDE>

[1]BallB, ChakravartyC, SarkarP, 2020. Silicon and phosphorus Co-doped bipyridine-linked covalent triazine framework as a promising metal-free catalyst for hydrogen evolution reaction: a theoretical investigation. The Journal of Physical Chemistry Letters, 11(4):1542-1549.

[2]BoeleeE, GeerlingG, van der ZaanB, et al., 2019. Water and health: from environmental pressures to integrated responses. Acta Tropica, 193:217-226.

[3]CaoYQ, ZhuYZ, ChenXF, et al., 2019. N-doped hierarchical porous metal-free catalysts derived from covalent triazine frameworks for the efficient oxygen reduction reaction. Catalysis Science & Technology, 9(23):6606-6612.

[4]ChengZ, FangW, ZhaoTS, et al., 2018. Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Applied Materials & Interfaces, 10(48):41415-41421.

[5]FengCY, TangL, DengYC, et al., 2021. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Applied Catalysis B: Environmental, 281:119539.

[6]GaoSJ, ZhangP, HuangGC, et al., 2021. Band gap tuning of covalent triazine-based frameworks through iron doping for visible-light-driven photocatalytic hydrogen evolution. Chemsuschem, 14(18):3850-3857.

[7]GeWY, JiaoSY, XuMM, et al., 2020. Trioctylphosphine (TOP)-free synthesis of TiSe2 plates for enhanced photocatalytic degradation performance of Rhodamine B dyes. Solid State Sciences, 103:106189.

[8]HeSX, YinRL, LaiTY, et al., 2021. Structure-dependent degradation of nitroimidazoles by cobalt-manganese layered double hydroxide catalyzed peroxymonosulfate process. Chemosphere, 266:129006.

[9]HongY, ChoY, GoEM, et al., 2021. Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chemical Engineering Journal, 418:129346.

[10]HuSY, SunYN, FengZW, et al., 2022. Design and construction strategies to improve covalent organic frameworks photocatalyst’s performance for degradation of organic pollutants. Chemosphere, 286:131646.

[11]HuYB, GaoXK, DiCA, et al., 2011. Core-expanded naphthalene diimides fused with sulfur heterocycles and end-capped with electron-withdrawing groups for air-stable solution-processed n-channel organic thin film transistors. Chemistry of Materials, 23(5):1204-1215.

[12]HuYP, HuangW, WangHS, et al., 2020. Metal-free photocatalytic hydrogenation using covalent triazine polymers. Angewandte Chemie International Edition, 59(34):‍14378-14382.

[13]HuangW, ByunJ, RörichI, et al., 2018. Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade. Angewandte Chemie International Edition, 57(27):8316-8320.

[14]HuangW, HeQ, HuYP, et al., 2019. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production. Angewandte Chemie, 131(26):8768-8772.

[15]KongZ, LuL, ZhuC, et al., 2022. Enhanced adsorption and photocatalytic removal of PFOA from water by F-functionalized MOF with in-situ-growth TiO2: regulation of electron density and bandgap. Separation and Purification Technology, 297:121449.

[16]LiJH, ShenB, HongZH, et al., 2012. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chemical Communications, 48(98):12017-12019.

[17]LiLY, FangW, ZhangP, et al., 2016. Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. Journal of Materials Chemistry A, 4(32):12402-12406.

[18]LuF, AstrucD, 2020. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408:213180.

[19]NiuQ, ChengZ, ChenQS, et al., 2021. Constructing nitrogen self-doped covalent triazine-based frameworks for visible-light-driven photocatalytic conversion of CO2 into CH4. ACS Sustainable Chemistry & Engineering, 9(3):‍1333-1340.

[20]QianZF, WangZJ, ZhangKAI, 2021. Covalent triazine frameworks as emerging heterogeneous photocatalysts. Chemistry of Materials, 33(6):1909-1926.

[21]RenSJ, BojdysMJ, DawsonR, et al., 2012. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Advanced Materials, 24(17):2357-2361.

[22]SarkarP, ChowdhuryAH, BiswasS, et al., 2021. 2D covalent organic framework: a photoactive heterogeneous catalyst for chemical fixation of CO2 over propargyl amines in water under sunlight. Materials Today Chemistry, 21:100509.

[23]ShenY, ZhuC, SongS, et al., 2019. Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water. Environmental Science & Technology, 53(15):9091-9101.

[24]VentosaE, MeiB, XiaW, et al., 2013. TiO2(B)/anatase composites synthesized by spray drying as high performance negative electrode material in Li-ion batteries. ChemSusChem, 6(8):1312-1315.

[25]VickersNJ, 2017. Animal communication: when I’m calling you, will you answer too? Current Biology, 27(14):R713-R715.

[26]WangCC, GuoY, YangY, et al., 2014. Sulfur-doped polyimide photocatalyst with enhanced photocatalytic activity under visible light irradiation. ACS Applied Materials & Interfaces, 6(6):4321-4328.

[27]XuJJ, ZhuC, SongS, et al., 2022. A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water. Journal of Hazardous Materials, 423:127004.

[28]XuJJ, LuL, ZhuC, et al., 2023. Insights into conduction band flexibility induced by spin polarization in titanium-based metal-organic frameworks for photocatalytic water splitting and pollutants degradation. Journal of Colloid and Interface Science, 630:430-442.

[29]ZhangYM, HuYM, ZhaoJH, et al., 2019. Covalent organic framework-supported Fe-TiO2 nanoparticles as ambient-light-active photocatalysts. Journal of Materials Chemistry A, 7(27):16364-16371.

[30]ZhuBC, ZhangLY, ChengB, et al., 2018. First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Applied Catalysis B: Environmental, 224:983-999.

[31]ZhuC, ShenY, WangSB, et al., 2021a. Bidirectional progressive optimization of carbon and nitrogen defects in solar-driven regenerable adsorbent to remove UV-filters from water. ACS ES&T Engineering, 1(3):456-466.

[32]ZhuC, SongS, FangQL, et al., 2021b. Optimized pore configuration in solar-driven regenerable adsorbent for organic micro-pollutants removal. Chemical Engineering Journal, 426:131244.

[33]ZhuC, FangQL, LiuRL, et al., 2022. Insights into the crucial role of electron and spin structures in heteroatom-doped covalent triazine frameworks for removing organic micropollutants. Environmental Science & Technology, 56(10):6699-6709.

[34]ZhuC, LuL, XuJJ, et al., 2023. Metal monovacancy-induced spin polarization for simultaneous energy recovery and wastewater purification. Chemical Engineering Journal, 451:138537.

[35]ZhuYK, ZhangY, ChengLL, et al., 2020. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation. Advanced Powder Technology, 31(3):1148-1159.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2200440

CLC number:

Download Full Text:

Click Here

Downloaded:

760

Download summary:

<Click Here> 

Downloaded:

251

Clicked:

870

Cited:

0

On-line Access:

2023-01-11

Received:

2022-09-12

Revision Accepted:

2022-10-14

Crosschecked:

2023-01-13

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE