Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Road pavement performance prediction using a time series long short-term memory (LSTM) model

Abstract: Intelligent maintenance of roads and highways requires accurate deterioration evaluation and performance prediction of asphalt pavement. To this end, we develop a time series long short-term memory (LSTM) model to predict key performance indicators (PIs) of pavement, namely the international roughness index (IRI) and rutting depth (RD). Subsequently, we propose a comprehensive performance indicator for the pavement quality index (PQI), which leverages the highway performance assessment standard method, entropy weight method, and fuzzy comprehensive evaluation method. This indicator can evaluate the overall performance condition of the pavement. The data used for the model development and analysis are extracted from tests on two full-scale accelerated test tracks, called MnRoad and RIOHTrack. Six variables are used as predictors, including temperature, precipitation, total traffic volume, asphalt surface layer thickness, pavement age, and maintenance condition. Furthermore, wavelet denoising is performed to analyze the impact of missing or abnormal data on the LSTM model accuracy. In comparison to a traditional autoregressive integrated moving average (ARIMAX) model, the proposed LSTM model performs better in terms of PI prediction and resiliency to noise. Finally, the overall prediction accuracy of our proposed performance indicator PQI is 93.8%.

Key words: Asphalt pavement performance model; International roughness index (IRI); Rutting depth (RD); Long short-term memory (LSTM) model; Pavement management system

Chinese Summary  <3> 基于时序长短期记忆模型的道路路面性能预测

作者:侯川川1,王欢1,关伟2,陈军1
机构:1北京航空航天大学,交通科学与工程学院,中国北京,100191;2交通运输部公路科学研究院,中国北京,100088
目的:提出一种道路路面性能指标(国际平整度指数和车辙深度)的准确预测方法,并提出一个道路路面使用性能的综合评价指标,以实现对路面综合性能的有效预测。
创新点:1.采用两条典型足尺道路的数据发展了一个高准确率的基于时序长短期记忆模型的道路路面性能预测模型;2.采用对路面技术参数数据进行小波降噪处理,验证了所提模型的鲁棒性。
方法:1.采用温度、降水量、交通量、沥青面层厚度、路龄、维修状况和初始路面技术参数作为影响变量分别建立自回归移动平均模型(ARIMAX)时间序列模型和长短期记忆(LSTM)神经网络模型,对路面各项技术参数进行预测,对收集的路面技术参数数据进行小波降噪处理后再次建立模型对其进行预测,并以此分析异常数据对不同模型精度的影响;2.综合设计规范法、熵权法和模糊评价法的优点对沥青路面的使用性能进行综合评价,选择评价最严格的结果作为最终评价结果,然后将最终评价结果作为输出变量,将平整度、车辙深度和横向力系数三种路面技术参数作为输入变量,并基于反向传播神经网络分类模型建立路面使用性能综合评价模型;3.基于路面使用性能综合评价模型和路面各项技术参数的预测结果得出路面使用性能综合指标的预测状态。
结论:1.相对于ARIMAX时间序列模型,LSTM模型在路面各项技术参数的预测方面表现明显更好,并且对原始数据中的噪声信号具有更强的容忍度和鲁棒性;2.所提出的路面使用性能综合指标预测方法的准确率较高,且整体预测精度可达93.8%。

关键词组:沥青路面性能模型;国际平整度指数;车辙深度;长短期记忆模型;路面管理系统


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2300643

CLC number:

Download Full Text:

Click Here

Downloaded:

507

Download summary:

<Click Here> 

Downloaded:

19

Clicked:

786

Cited:

0

On-line Access:

2025-05-30

Received:

2023-12-19

Revision Accepted:

2024-06-02

Crosschecked:

2025-05-30

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE