Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE A

ISSN 1673-565X(Print), 1862-1775(Online), Monthly

Predicting the temperature of CRTS III ballastless tracks in cold regions based on a TCN-Track model

Abstract: The uneven distribution of the temperature field in the track structure, caused by various meteorological factors such as extremely low temperatures and snowfall, leads to significant temperature loads and is the primary cause of damage to China Railway Track System (CRTS) III ballastless tracks in cold regions during service. In this study, to predict the temperature of the track structure accurately, we analyzed meteorological data collected from Shenyang, China, and identified the factors that had the most effect on the track temperature field. We propose a temporal convolutional network (TCN)-based temperature field prediction model for ballastless tracks (TCN-Track model), which enhances the ability to extract and fuse local and global features from complex long-term meteorological data. The results indicate that the proposed TCN-Track model performs well in predicting track temperature fields from meteorological data, with a mean absolute error (MAE) ranging from 0.26 to 0.39, a root mean square error (RMSE) ranging from 0.32 to 0.50, and correlation coefficient (R) values ranging from 0.888 to 0.985. Compared with a long short-term memory (LSTM) model, the MAE of the TCN-Track model is reduced by 89.17% and the RMSE by 88.51%. This method offers a new solution for accurately predicting the temperature field of ballastless tracks in cold regions, aiding in predicting and preventing track damage caused by low temperatures.

Key words: Cold regions; CRTS III ballastless tracks; Temperature prediction; Meteorological variables; Time prediction model

Chinese Summary  <1> 基于TCN-Track模型的寒区CRTS III无砟轨道温度场预测研究

作者:梁捷1,2,4,邓世杰1,2,任娟娟1,2,叶文龙1,2,4,章恺尧5,李大成3,张荣鹤3
机构:1西南交通大学,土木工程学院,中国成都,610031;2西南交通大学,轨道交通运载系统全国重点实验室,中国成都,610031;3中国铁路设计集团有限公司,中国天津,300308;4运营安全保障铁路行业工程研究中心,中国成都,610031;5上海申通地铁建设集团有限公司,中国上海,201103
目的:针对寒区CRTS III无砟轨道因气象要素时空异质性导致的温度场非均匀分布问题,本文旨在通过分析沈阳地区气象数据,量化极端低温与降雪等气候因子对轨道热力耦合效应的影响机制,进而开发基于TCN-Track模型的温度场预测方法。该研究通过融合多尺度气象特征与热传导机理,构建具备动态预测能力的智能模型,为寒冷环境下高铁轨道的预防性维护和热应力调控提供理论依据与技术支撑。
创新点:1.系统分析了极端低温、降雪等气象因子对轨道多层结构温度分布的累积影响特性,为温度场建模提供科学依据;2.突破传统模型仅基于瞬时气象数据的局限,实现了长期气象信息的深层特征提取与序列依赖建模;3建立了轨道结构多层温度场预测体系,不仅覆盖轨道表面温度,同时揭示了内部结构温度变化规律,全面支撑轨道力学性能演变分析。
方法:1.通过实测气象数据分析,识别寒冷地区无砟轨道温度场分布的主控因素,并揭示极端低温、太阳辐射与降雪等历史累积效应对温度演变规律的影响(图3和4);2.基于时间卷积网络(TCN)理论,提出TCN-Track预测模型,构建局部与全局气象特征融合的温度场时序映射关系(图5);3.通过超参数分析,确定模型训练轮数与卷积核尺寸对预测性能的影响规律,优化得到最优组合参数(表1和2);4.通过模型训练与对比实验,验证TCN-Track在温度场预测精度上是否优于传统的长短时记忆(LSTM)方法(表3,图10)。
结论:1.提出的TCN-Track模型,融合了TCN、LSTM和门控循环单元(GRU)网络,有效整合了气象因素的累积效应,提升了特征提取能力,并实现了对无砟轨道多层结构温度场的精准预测。2.模型在预测每日轨道结构各层温度时,取得了平均绝对误差(MAE)在0.26至0.39之间、均方根误差(RMSE)在0.32至0.50之间、相关系数R在0.888至0.985之间的优异结果;3.与TCN、LSTM和GRU等单一模型相比,TCN-Track模型在轨道温度场预测任务中将MAE降低了3.61%~89.17%,将RMSE降低了6.67%~88.51%,以及将相关系数R提高了1.45%~29.57%。

关键词组:寒区;CRTSIII型板式无砟轨道;温度预测;气象变量;时序预测模型


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.A2400527

CLC number:

Download Full Text:

Click Here

Downloaded:

2430

Download summary:

<Click Here> 

Downloaded:

21

Clicked:

1448

Cited:

0

On-line Access:

2026-01-26

Received:

2024-11-19

Revision Accepted:

2025-04-17

Crosschecked:

2026-01-27

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE