|
|
Journal of Zhejiang University SCIENCE A
ISSN 1673-565X(Print), 1862-1775(Online), Monthly
2026 Vol.27 No.1 P.26-42
Comparative analysis of windbreak configurations for unloaded gondola train cars under crosswinds based on computational fluid dynamics and multi-body dynamics
Abstract: Understanding the aerodynamic and dynamic characteristics of unloaded freight trains in crosswinds is pivotal for ensuring their operational safety and reliability. The dynamic performance of unloaded gondola cars under varying windbreak heights is therefore investigated in this study, revealing distinct differences in lateral stability and safety indicators, and enabling the determination of an optimal windbreak height. A 3D unsteady aerodynamic model was developed using the improved delayed detached eddy simulation (IDDES) method and an overset numerical mesh. Also leveraging a multi-body dynamics (MBD) model of a three-wagon freight car configuration, we investigate time-averaged aerodynamic forces, transient flow field distributions, and nonlinear dynamic responses. Parametric analyses reveal a non-monotonic relationship between the height of the windbreak and the stability of the train. A windbreak with a critical height of 2 m (0.74 relative to the car body height) results in 76%, 64%, and 81% lower values of the derailment coefficient CD, wheel unloading ratio R, and overturning coefficient CO, respectively. Notably, when the height of the windbreak exceeds 2 m, vortices within the gondola induce an adverse pressure coefficient distribution (Cp=-2.17) on the leeward internal wall, intensifying the lateral force and overturning moment. Furthermore, frequency-domain analysis reveals that the lateral sway and overturning vibration mode are associated with low-frequency (1.61 Hz) lateral vibrations under crosswind conditions. This study provides a theoretical foundation for the design and optimization of railway windbreaks.
Key words: Crosswind; Train gondola; Unsteady aerodynamics; Dynamic response; Train safety; Windbreaks
机构:西南交通大学,轨道交通运载系统全国重点实验室,中国成都,610031
目的:研究横风下空载敞车的空气动力学和动力学特性对于确保其安全运行至关重要。本文旨在分析空载敞车在不同高度挡风墙下运行的动态性能,探明列车周围流场结构和气动载荷的变化规律,揭示挡风墙高度对气动载荷和动力学响应的影响机制,并确定最优挡风墙高度。
创新点:1.通过分析横风下空载敞车周围的流场结构和压力分布,得到气动载荷随挡风墙高度的变化规律;2.通过动力学仿真计算和模态分析,探明横风对车辆低频横向振动的影响机制。
方法:1.采用改进的延迟分离涡模拟(IDDES)方法和重叠网格技术建立三维非稳态空气动力学模型;通过仿真计算得到空载敞车的气动载荷和瞬态流场结构。2.通过三连挂C80货车多体动力学(MBD)模型计算动力学响应,得到不同高度挡风墙下列车运行的稳定性和安全性指标。
结论:1.挡风墙高度与列车横向稳定性之间存在非单调关系;临界高度为2 m(0.74倍车体高度)的挡风墙可使脱轨系数、轮重减载率和倾覆系数的值分别降低76%、64%和81%。2.当挡风墙高度超过2 m时,敞车空腔内的涡流会对背风侧内壁面产生不利的压力系数分布(最小值为−2.17),从而增大侧力和倾覆力矩。3.横向摇摆和倾覆的振动模态与低频(1.61 Hz)横向振动相关。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.A2500044
CLC number:
Download Full Text:
Downloaded:
3091
Download summary:
<Click Here>Downloaded:
26Clicked:
3294
Cited:
0
On-line Access:
2026-01-26
Received:
2025-02-15
Revision Accepted:
2025-06-13
Crosschecked:
2026-01-27