|
|
Journal of Zhejiang University SCIENCE B
ISSN 1673-1581(Print), 1862-1783(Online), Monthly
2008 Vol.9 No.7 P.520-526
Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine arabinoside
Abstract: Nucleoside phosphorylases (NPases) were found to be induced in Enterobacter aerogenes DGO-04, and cytidine and cytidine 5′-monophosphate (CMP) were the best inducers. Five mmol/L to fifteen mmol/L cytidine or CMP could distinctly increase the activities of purine nucleoside phosphorylase (PNPase), uridine phosphorylase (UPase) and thymidine phosphorylase (TPase) when they were added into medium from 0 to 8 h. In the process of enzymatic synthesis of adenine arabinoside from adenine and uracil arabinoside with wet cells of Enterobacter aerogenes DGO-04 induced by cytidine or CMP, the reaction time could be shortened from 36 to 6 h. After enzymatic reaction the activity of NPase in the cells induced remained higher than that in the cells uninduced.
Key words: Nucleoside phosphorylase (NPase), Enterobacter aerogenes, Cytidine, Cytidine 5′-monophosphate (CMP), Adenine arabinoside
References:
[1] Bzowska, A., Kulikowska, E., Shugar, D., 2000. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacology & Therapeutics, 88(3):349-425.
[2] Caradoc-Davies, T.T., Cutfield, S.M., Lamont, I.L., Cutfield, J.F., 2004. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. Journal Molecular Biology, 337(2):337-354.
[3] Esipov, R.S., Gurevich, A.I., Chuvikovsky, D.V., Chupova, L.A., Muravyova, T.I., Miroshnikov, A.I., 2002. Overexpression of Escherichia coli genes encoding nucleoside phosphorylases in the pET/B121(DE3) system yields active recombinant enzymes. Protein Expression and Purification, 24(1):56-60.
[4] Giuseppina, B., Simona, C., Daniela, G., Gaetano, O., Giancarlo, T., Gabriele, Z., 2000. Recombinant Bacterial Strains for the Production of Natural Nucleosides and Modified Analogues Thereof. WO 00/39307.
[5] Hammer-Jespersen, K., Munch-Petersen, A., Nygaard, P., Schwartz, M., 1971. Induction of enzymes involved in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K12. European Journal of Biochemistry, 19(4):533-538.
[6] Herman, M.K., 1947. Differential spectrophotometry of purine compounds by means of specific enzymes. Journal of Biological Chemistry, 167:429-443.
[7] Jarkko, R., Tatiana, E., Seppo, L., Igor, A.M., Roman, S.E., Anatoly, I.M., 2007. An enzymatic transglycosylation of purine bases. Nucleosides Nucleotides Nucleic Acids, 26(8/9):905-909.
[8] Kalckar, H.M., Klenow, H., 1948. Milk xanthopterin oxidase and pteroylglutamic acid. Journal of Biology Chemistry, 172:349-353.
[9] Krenitsky, T.A., Elion, G.B., Rideout, J.E., 1979. Enzynatic Synthesis of Purine Arabinonucleosides. EP 0002192 B1.
[10] Ling, F., Inoue, Y., Kimura, A., 1990. Purification and characterization of a novel nucleoside phosphorylase from a Klebsiella sp. and its use in the enzymatic production of adenine arabinoside. Applied and Enviromental Microbiology, 56(12):3830-3834.
[11] Ling, F., Inoue, Y., Kimura, A., 1994. Induction, purification and utilization of purine nucleoside phosphorylase and uridine phosphorylase from Klebsiella sp. Process Biochemistry, 29(5):355-361.
[12] Munch-Petersen, A., 1968. On the catabolism of deoxyribonucleosides in cells and cell extracts of Eschechia coli. European Journal Biochemistry, 6(3):432-442.
[13] Robertson, B.C., Jargiello, P., Blank, J., Patricia, A.H., 1970. Genetic regulation of ribonucleoside and deoxyribonucleoside catabolism in Salmonella typhimurium. Journal of Bacteriology, 102:628-635.
[14] Saunders, P.P., Barbara, A.W., Saunders, G.F., 1969. Purification and comparative properties of a pyrimidine nucleoside phophorylase from Bacillus stearothermophilus. Journal of Biological Chemistry, 244(13):3691-3697.
[15] Thomsen, L.E., Pedersen, M., Nørregaard-Madsen, M., Valentin-Hansen, P., Kallipolitis, B.H., 1999. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonnella typhimurium to Escherichia coli CytR. Journal Molecular Biology, 288(1):165-175.
[16] Tozzi, M.G., Sgarrella, F., Ipata, P.L., 1981. Induction and repression of enzymes involved in exogenous purine compound utilization in Bacillus cereus. Biochimica et Biophysica Acta, 678:460-466.
[17] Trelles, J.A., Fernández-Lucas, J., Condezo, L.A., Sinisterra, J.V., 2004. Nucleoside synthesis by immobilised bacterial whole cells. Journal of Molecular Catalysis B: Enzymatic, 30(5-6):219-227.
[18] Utagawa, T., Hirokazu, M., Fumihiro, Y., Akihiro, Y., Koji, M., 1985. Microbiological synthesis of adenine arabinoside. Agricultural and Biological Chemistry, 49(4):1053-1058.
[19] Vita, A., Amici, A., Magni, G., 1983. Induction of pyrimidine nucleosides metabolizing enzymes in E. coli B. Italy Journal Biochemistry, 32(3):145-151.
[20] Zolotukhina, M., Ovcharova, I., Eremina, S., Errais, L., Mironov, A.S., 2003. Comparison of the structure and regulation of the udp gene of Vibrio cholerae, Yersinia pseudotuberculosis, Salmonella typhimurium, and Escherichia coli. Research in Microbiology, 154(7):510-520.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.B0710618
CLC number:
Q7
Download Full Text:
Downloaded:
3656
Clicked:
8400
Cited:
5
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked: