Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins

Abstract: Polycomb group (PcG) complexes are epigenetic regulatory complexes that conduct transcriptional repression of target genes via modifying the chromatin. The two best characterized forms of PcG complexes, polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are required for maintaining the stemness of embryonic stem cells and many types of adult stem cells. The spectra of target genes for PRCs are dynamically changing with cell differentiation, which is essential for proper decisions on cell fate during developmental processes. Chromobox (CBX) family proteins are canonical components in PRC1, responsible for targeting PRC1 to the chromatin. Recent studies highlight the function specifications among CBX family members in undifferentiated and differentiated stem cells, which reveal the interplay between compositional diversity and functional specificity of PRC1. In this review, we summarize the current knowledge about targeting and functional mechanisms of PRCs, emphasizing the recent breakthroughs related to CBX proteins under a number of physiological and pathological conditions.

Key words: Polycomb, Polycomb repressive complex 1 (PRC1), Chromobox (CBX) protein, Epigenetic regulation, Cancer

Chinese Summary  <318> 多梳抑制复合体PRC1的CBX家族蛋白在表观遗传调控中的作用

研究目的:多梳蛋白家族(PcG)是一类染色质水平上通过表观遗传修饰调控靶基因的转录因子,其主要功能是使其靶基因转录受到抑制进而沉默。PcG通常以多梳蛋白复合体(PRC)的形式存在,目前研究的最多的是PRC1和PRC2。PRC1在PcG对其靶基因进行转录抑制发挥着主要作用。本综述主要论述了哺乳动物中PRC1核心成员CBX蛋白在多梳蛋白调控基因转录过程中发挥的作用及其对胚胎发育、细胞记忆、细胞周期、细胞增殖和肿瘤形成等过程的影响。
创新要点:现已有大量有关PcG在表观遗传水平对其靶基因进行修饰转录机制的综述报道,且以PRC1和PRC2为整体来介绍表观遗传调控机制的文章也屡见不鲜。然而,关于PRC1核心成员CBX蛋白在哺乳动中的同源蛋白CBX2、CBX4、CBX6、CBX7、CBX8对哺乳动物个体发育调节及肿瘤发生过程的分子机制并没有系统的论述。本综述主要将这五种CBX蛋白在转录分子水平上的所发挥的功能进行相关的介绍,并且总结了CBX2、CBX4、CBX6、CBX7、CBX8各自最新的研究进展,体现出五种CBX蛋白的共同功能、各自独特的功能及彼此间的相互联系。
重要结论:总结了在哺乳动物中的五种CBX蛋白在胚胎发育和肿瘤形成等过程中独特的功能调节机制以及整体的相互作用,发现CBX作为PRC1的核心组分在基因表观遗传调控中发挥着极其重要的作用。

关键词组:多梳蛋白;多梳抑制复合体;CBX蛋白;表观遗传调控;癌症


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Agrawal, N., Banerjee, R., 2008. Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine β-synthase sumoylation. PLoS ONE, 3(12):e4032.

[2]Aloia, L., Di Stefano, B., Di Croce, L., 2013. Polycomb complexes in stem cells and embryonic development. Development, 140(12):2525-2534.

[3]Atchison, L., Ghias, A., Wilkinson, F., et al., 2003. Transcription factor YY1 functions as a PcG protein in vivo. EMBO J., 22(6):1347-1358.

[4]Basu, A., Wilkinson, F.H., Colavita, K., et al., 2014. YY1 DNA binding and interaction with YAF2 is essential for polycomb recruitment. Nucl. Acids Res., 42(4):2208-2223.

[5]Baumann, C., de la Fuente, R., 2011. Role of polycomb group protein Cbx2/M33 in meiosis onset and maintenance of chromosome stability in the mammalian germline. Genes, 2(1):59-80.

[6]Bengani, H., Mendiratta, S., Maini, J., et al., 2013. Identification and validation of a putative polycomb responsive element in the human genome. PLoS ONE, 8(6):e67217.

[7]Bernard, D., Martinez-Leal, J.F., Rizzo, S., et al., 2005. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene, 24(36):5543-5551.

[8]Bernstein, B.E., Mikkelsen, T.S., Xie, X., et al., 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2):315-326.

[9]Bernstein, E., Duncan, E.M., Masui, O., et al., 2006. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol., 26(7):2560-2569.

[10]Bezsonova, I., Walker, J.R., Bacik, J.P., et al., 2009. Ring1B contains a ubiquitin-like docking module for interaction with Cbx proteins. Biochemistry, 48(44):10542-10548.

[11]Biason-Lauber, A., Konrad, D., Meyer, M., et al., 2009. Ovaries and female phenotype in a girl with 46, XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet., 84(5):658-663.

[12]Brockdorff, N., 2013. Noncoding RNA and polycomb recruitment. RNA, 19(4):429-442.

[13]Brookes, E., de Santiago, I., Hebenstreit, D., et al., 2012. Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell, 10(2):157-170.

[14]Brown, J.L., Kassis, J.A., 2013. Architectural and functional diversity of polycomb group response elements in Drosophila. Genetics, 195(2):407-419.

[15]Buchwald, G., van der Stoop, P., Weichenrieder, O., et al., 2006. Structure and E3-ligase activity of the ring-ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J., 25(11):2465-2474.

[16]Buschbeck, M., Uribesalgo, I., Wibowo, I., et al., 2009. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol., 16(10):1074-1079.

[17]Cantin, G.T., Yi, W., Lu, B., et al., 2008. Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J. Proteome Res., 7(3):1346-1351.

[18]Chen, R.Q., Yang, Q.K., Lu, B.W., et al., 2009. CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res., 69(6):2663-2668.

[19]Coré, N., Bel, S., Gaunt, S.J., et al., 1997. Altered cellular proliferation and mesoderm patterning in polycomb-M33-deficient mice. Development, 124(3):721-729.

[20]Coré, N., Joly, F., Boned, A., et al., 2004. Disruption of E2F signaling suppresses the INK4a-induced proliferative defect in M33-deficient mice. Oncogene, 23(46):7660-7668.

[21]Crea, F., Paolicchi, E., Marquez, V.E., et al., 2012. Polycomb genes and cancer: time for clinical application? Crit. Rev. Oncol. Hematol., 83(2):184-193.

[22]Creyghton, M.P., Markoulaki, S., Levine, S.S., et al., 2008. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell, 135(4):649-661.

[23]Daub, H., Olsen, J.V., Bairlein, M., et al., 2008. Kinase-selective enrichment enables quantitative phospho-proteomics of the kinome across the cell cycle. Mol. Cell, 31(3):438-448.

[24]Dephoure, N., Zhou, C., Villen, J., et al., 2008. A quantitative atlas of mitotic phosphorylation. PNAS, 105(31):10762-10767.

[25]Dietrich, N., Bracken, A.P., Trinh, E., et al., 2007. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. EMBO J., 26(6):1637-1648.

[26]Dou, H., Huang, C., van Nguyen, T., et al., 2011. SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett., 585(18):2891-2896.

[27]Forzati, F., Federico, A., Pallante, P., et al., 2012a. CBX7 is a tumor suppressor in mice and humans. J. Clin. Invest., 122(2):612-623.

[28]Forzati, F., Federico, A., Pallante, P., et al., 2012b. Tumor suppressor activity of CBX7 in lung carcinogenesis. Cell Cycle, 11(10):1888-1891.

[29]Galanty, Y., Belotserkovskaya, R., Coates, J., et al., 2009. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature, 462(7275):935-939.

[30]Gao, Z., Zhang, J., Bonasio, R., et al., 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell, 45(3):344-356.

[31]Gil, J., Bernard, D., Martinez, D., et al., 2004. Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol., 6(1):67-72.

[32]Hannafon, B.N., Sebastiani, P., de las Morenas, et al., 2011. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res., 13(2):R24.

[33]Hatano, A., Matsumoto, M., Higashinakagawa, T., et al., 2010. Phosphorylation of the chromodomain changes the binding specificity of Cbx2 for methylated histone H3. Biochem. Biophys. Res. Commun., 397(1):93-99.

[34]Hinz, S., Kempkensteffen, C., Christoph, F., et al., 2008. Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance. Tumour Biol., 29(5):323-329.

[35]Ismail, I.H., Gagne, J.P., Caron, M.C., et al., 2012. CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucl. Acids Res., 40(12):5497-5510.

[36]Kagey, M.H., Melhuish, T.A., Wotton, D., 2003. The polycomb protein Pc2 is a SUMO E3. Cell, 113(1):127-137.

[37]Kang, X., Qi, Y., Zuo, Y., et al., 2010. SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol. Cell, 38(2):191-201.

[38]Kanhere, A., Viiri, K., Araujo, C.C., et al., 2010. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell, 38(5):675-688.

[39]Karamitopoulou, E., Pallante, P., Zlobec, I., et al., 2010. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur. J. Cancer, 46(8):1438-1444.

[40]Katoh-Fukui, Y., Tsuchiya, R., Shiroishi, T., et al., 1998. Male-to-female sex reversal in M33 mutant mice. Nature, 393(6686):688-692.

[41]Katoh-Fukui, Y., Owaki, A., Toyama, Y., et al., 2005. Mouse polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression. Blood, 106(5):1612-1620.

[42]Katoh-Fukui, Y., Miyabayashi, K., Komatsu, T., et al., 2012. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology, 153(2):913-924.

[43]Klauke, K., Radulovic, V., Broekhuis, M., et al., 2013. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat. Cell Biol., 15(4):353-362.

[44]Kotake, Y., Nakagawa, T., Kitagawa, K., et al., 2011. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene, 30(16):1956-1962.

[45]Ku, M., Koche, R.P., Rheinbay, E., et al., 2008. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet., 4(10):e1000242.

[46]Lee, S.H., Um, S.J., Kim, E.J., 2013. CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett., 335(2):397-403.

[47]Lee, S.W., Lee, M.H., Park, J.H., et al., 2012. SUMOylation of hnRNP-K is required for p53-mediated cell-cycle arrest in response to DNA damage. EMBO J., 31(23):4441-4452.

[48]Lewis, E.B., 1978. A gene complex controlling segmentation in Drosophila. Nature, 276(5688):565-570.

[49]Li, B., Zhou, J., Liu, P., et al., 2007. Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochem. J., 405(2):369-378.

[50]Li, G., Warden, C., Zou, Z., et al., 2013. Altered expression of polycomb group genes in glioblastoma multiforme. PLoS ONE, 8(11):e80970.

[51]Liu, B., Liu, Y.F., Du, Y.R., et al., 2013. Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Development, 140(4):780-788.

[52]Long, J., Zuo, D., Park, M., 2005. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J. Biol. Chem., 280(42):35477-35489.

[53]Luis, N.M., Morey, L., Mejetta, S., et al., 2011. Regulation of human epidermal stem cell proliferation and senescence requires polycomb-dependent and -independent functions of Cbx4. Cell Stem Cell, 9(3):233-246.

[54]MacPherson, M.J., Beatty, L.G., Zhou, W., et al., 2009. The CTCF insulator protein is posttranslationally modified by SUMO. Mol. Cell. Biol., 29(3):714-725.

[55]Maertens, G.N., El Messaoudi-Aubert, S., Racek, T., et al., 2009. Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS ONE, 4(7):e6380.

[56]Maethner, E., Garcia-Cuellar, M.P., Breitinger, C., et al., 2013. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells. Cell Rep., 3(5):1553-1566.

[57]Malik, B., Hemenway, C.S., 2013. CBX8, a component of the polycomb PRC1 complex, modulates DOT1L-mediated gene expression through AF9/MLLT3. FEBS Lett., 587(18):3038-3044.

[58]Margueron, R., Li, G., Sarma, K., et al., 2008. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell, 32(4):503-518.

[59]Margueron, R., Justin, N., Ohno, K., et al., 2009. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 461(7265):762-767.

[60]Mendenhall, E.M., Koche, R.P., Truong, T., et al., 2010. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet., 6(12):e1001244.

[61]Merrill, J.C., Kagey, M.H., Melhuish, T.A., et al., 2010. Inhibition of CtBP1 activity by Akt-mediated phosphorylation. J. Mol. Biol., 398(5):657-671.

[62]Mills, A.A., 2010. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer, 10(10):669-682.

[63]Mohammad, H.P., Cai, Y., McGarvey, K.M., et al., 2009. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation. Cancer Res., 69(15):6322-6330.

[64]Morey, L., Helin, K., 2010. Polycomb group protein-mediated repression of transcription. Trends Biochem. Sci., 35(6):323-332.

[65]Morey, L., Pascual, G., Cozzuto, L., et al., 2012. Non-overlapping functions of the polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell, 10(1):47-62.

[66]Morris, J.R., Boutell, C., Keppler, M., et al., 2009. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature, 462(7275):886-890.

[67]Muller, J., Verrijzer, P., 2009. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev., 19(2):150-158.

[68]Muller, J., Gaunt, S., Lawrence, P.A., 1995. Function of the polycomb protein is conserved in mice and flies. Development, 121(9):2847-2852.

[69]Nacerddine, K., Lehembre, F., Bhaumik, M., et al., 2005. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell, 9(6):769-779.

[70]O'Loghlen, A., Munoz-Cabello, A.M., Gaspar-Maia, A., et al., 2012. MicroRNA regulation of Cbx7 mediates a switch of polycomb orthologs during ESC differentiation. Cell Stem Cell, 10(1):33-46.

[71]Oh, Y., Chung, K.C., 2012. Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling. J. Biol. Chem., 287(21):17517-17529.

[72]Oh, Y., Kim, Y.M., Mouradian, M.M., et al., 2011. Human polycomb protein 2 promotes α-synuclein aggregate formation through covalent SUMOylation. Brain Res., 1381:78-89.

[73]Oktaba, K., Gutierrez, L., Gagneur, J., et al., 2008. Dynamic regulation by polycomb group protein complexes controls pattern formation and the cell cycle in Drosophila. Dev. Cell, 15(6):877-889.

[74]Olsen, J.V., Blagoev, B., Gnad, F., et al., 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127(3):635-648.

[75]Pallante, P., Federico, A., Berlingieri, M.T., et al., 2008. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res., 68(16):6770-6778.

[76]Pallante, P., Terracciano, L., Carafa, V., et al., 2010. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur. J. Cancer, 46(12):2304-2313.

[77]Pasini, D., Bracken, A.P., Jensen, M.R., et al., 2004. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J., 23(20):4061-4071.

[78]Pelisch, F., Pozzi, B., Risso, G., et al., 2012. DNA damage-induced heterogeneous nuclear ribonucleoprotein K sumoylation regulates p53 transcriptional activation. J. Biol. Chem., 287(36):30789-30799.

[79]Pemberton, H., Anderton, E., Patel, H., et al., 2014. Genome-wide co-localization of polycomb orthologs and their effects on gene expression in human fibroblasts. Genome Biol., 15(2):R23.

[80]Plath, K., Fang, J., Mlynarczyk-Evans, S.K., et al., 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science, 300(5616):131-135.

[81]Ren, X., Kerppola, T.K., 2011. REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. Mol. Cell. Biol., 31(10):2100-2110.

[82]Ren, X., Vincenz, C., Kerppola, T.K., 2008. Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol. Cell. Biol., 28(9):2884-2895.

[83]Richly, H., Aloia, L., di Croce, L., 2011. Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis., 2(9):e204.

[84]Rikova, K., Guo, A., Zeng, Q., et al., 2007. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6):1190-1203.

[85]Roscic, A., Moller, A., Calzado, M.A., et al., 2006. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol. Cell, 24(1):77-89.

[86]Schorderet, P., Duboule, D., 2011. Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet., 7(5):e1002071.

[87]Schorderet, P., Lonfat, N., Darbellay, F., et al., 2013. A genetic approach to the recruitment of PRC2 at the HoxD locus. PLoS Genet., 9(11):e1003951.

[88]Schwartz, Y.B., Pirrotta, V., 2013. A new world of polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet., 14(12):853-864.

[89]Scott, C.L., Gil, J., Hernando, E., et al., 2007. Role of the chromobox protein CBX7 in lymphomagenesis. PNAS, 104(13):5389-5394.

[90]Senthilkumar, R., Mishra, R.K., 2009. Novel motifs distinguish multiple homologues of polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genom., 10:549.

[91]Shinjo, K., Yamashita, Y., Yamamoto, E., et al., 2013. Expression of chromobox homolog 7 (CBX7) is associated with poor prognosis in ovarian clear cell adenocarcinoma via TRAIL-induced apoptotic pathway regulation. Int. J. Cancer, in press.

[92]Simon, J., Chiang, A., Bender, W., et al., 1993. Elements of the Drosophila bithorax complex that mediate repression by polycomb group products. Dev. Biol., 158(1):131-144.

[93]Simon, J.A., Kingston, R.E., 2013. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell, 49(5):808-824.

[94]Song, J., Durrin, L.K., Wilkinson, T.A., et al., 2004. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. PNAS, 101(40):14373-14378.

[95]Srinivasan, L., Atchison, M.L., 2004. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev., 18(21):2596-2601.

[96]Struhl, G., 1981. A gene product required for correct initiation of segmental determination in Drosophila. Nature, 293(5827):36-41.

[97]Tan, J., Jones, M., Koseki, H., et al., 2011. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell, 20(5):563-575.

[98]Tavares, L., Dimitrova, E., Oxley, D., et al., 2012. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell, 148(4):664-678.

[99]Tsai, M.C., Manor, O., Wan, Y., et al., 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992):689-693.

[100]van den Boom, V., Rozenveld-Geugien, M., Bonardi, F., et al., 2013. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood, 121(13):2452-2461.

[101]Vincenz, C., Kerppola, T.K., 2008. Different polycomb group CBX family proteins associate with distinct regions of chromatin using nonhomologous protein sequences. PNAS, 105(43):16572-16577.

[102]Wang, B., Tang, J., Liao, D., et al., 2013. Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann. Surg. Oncol., 20(S3):S684-S692.

[103]Wang, H., Wang, L., Erdjument-Bromage, H., et al., 2004. Role of histone H2A ubiquitination in polycomb silencing. Nature, 431(7010):873-878.

[104]Woo, C.J., Kharchenko, P.V., Daheron, L., et al., 2010. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell, 140(1):99-110.

[105]Woo, C.J., Kharchenko, P.V., Daheron, L., et al., 2013. Variable requirements for DNA-binding proteins at polycomb-dependent repressive regions in human HOX clusters. Mol. Cell. Biol., 33(16):3274-3285.

[106]Wotton, D., Merrill, J.C., 2007. Pc2 and SUMOylation. Biochem. Soc. Trans., 35(Pt 6):1401-1404.

[107]Wu, H.A., Balsbaugh, J.L., Chandler, H., et al., 2013. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J. Biol. Chem., 288(51):36398-36408.

[108]Wu, X., Johansen, J.V., Helin, K., 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell, 49(6):1134-1146.

[109]Yang, L., Lin, C., Liu, W., et al., 2011. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 147(4):773-788.

[110]Yap, K.L., Li, S., Munoz-Cabello, A.M., et al., 2010. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 38(5):662-674.

[111]Zhang, X.W., Zhang, L., Qin, W., et al., 2010. Oncogenic role of the chromobox protein CBX7 in gastric cancer. J. Exp. Clin. Cancer Res., 29(1):114.

[112]Zhao, J., Sun, B.K., Erwin, J.A., et al., 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902):750-756.

[113]Zhao, J., Ohsumi, T.K., Kung, J.T., et al., 2010. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell, 40(6):939-953.

[114]Zhou, X., Zhang, H.L., Gu, G.F., et al., 2013. Investigation of the relationship between chromobox homolog 8 and nucleus pulposus cells degeneration in rat intervertebral disc. In Vitro Cell. Dev. Biol. Anim., 49(4):279-286.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1400077

CLC number:

Q291; Q38

Download Full Text:

Click Here

Downloaded:

3548

Download summary:

<Click Here> 

Downloaded:

2221

Clicked:

11295

Cited:

8

On-line Access:

2014-05-05

Received:

2014-03-16

Revision Accepted:

2014-04-13

Crosschecked:

2014-04-16

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE