Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Individual and joint toxic effects of cadmium sulfate and α-naphthoflavone on the development of zebrafish embryo

Abstract: This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) and α-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dismutase (SOD) activity, as well as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mixtures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of multidrug resistance-associated protein (mrp) 1 and cytochrome P450 (cyp) 1a, which constituted the protective mechanisms for zebrafish embryos to chemical toxins. In conclusion, co-treatment of CdSO4 and ANF exhibited a much more severe damage in zebrafish embryos than individual treatment. Meanwhile, production of oxidative stress and altered expression of mrp1 and cyp1a could be important components of such joint toxicity.

Key words: Joint toxicity, Cadmium sulfate, α-Naphthoflavone, Zebrafish embryo, Oxidative stress

Chinese Summary  <488> 硫酸镉与α-萘黄酮对斑马鱼发育的个体毒性与联合毒性研究

研究目的:研究硫酸镉与α-萘黄酮对斑马鱼发育的个体毒性与联合毒性,并探讨其中的联合毒性机制。
创新要点:首次对硫酸镉与α-萘黄酮的联合毒性进行了研究,并探索了氧化应激、ATP结合盒式(ABC)转运蛋白及细胞色素P450蛋白(CYP)1A在化合物联合毒性中的作用。
研究方法:在不同时间点,依据形态学指标检测硫酸镉与α-萘黄酮单独使用与联合使用时对斑马鱼胚胎的致死与致畸性毒性。取样品,采用试剂盒检测不同处理状态下斑马鱼胚胎中谷胱甘肽(GSH)、超氧化物歧化酶(SOD)及丙二醛(MDA)三个氧化还原指标的改变,聚合酶链式反应(PCR)检测样品中多药耐药蛋白(mrp)1及cyp1a基因表达水平的改变。
重要结论:硫酸镉与α-萘黄酮的联用能够产生远大于个体且显著增强各自的毒性,而这种增强作用机理在于氧化应激压力的产生,以及两者合用下mrp1cyp1a基因表达水平的改变。

关键词组:联合毒性;硫酸镉;α-萘黄酮;斑马鱼胚胎;氧化应激压力


Share this article to: More

Go to Contents

References:

<HIDE>

[1]Berry, J.P., Gantar, M., Gibbs, P.D., et al., 2007. The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 145(1):61-72.

[2]Billiard, S.M., Meyer, J.N., Wassenberg, D.M., et al., 2008. Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol. Sci., 105(1):5-23.

[3]Chow, E.S., Hui, M.N., Lin, C.C., et al., 2008. Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat. Toxicol., 87(3):157-169.

[4]Costa, J., Reis-Henriques, M.A., Castro, L.F., et al., 2012. ABC transporters, CYP1A and GSTα gene transcription patterns in developing stages of the Nile tilapia (Oreochromis niloticus). Gene, 506(2):317-324.

[5]Dong, M., Zhu, L., Zhu, S., et al., 2013. Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Chemosphere, 91(8):1107-1112.

[6]Duan, Z., Zhu, L., Kun, Y., et al., 2008. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. Ecotoxicol. Environ. Saf., 71(3):774-780.

[7]Fleming, C.R., di Giulio, R.T., 2011. The role of CYP1A inhibition in the embryotoxic interactions between hypoxia and polycyclic aromatic hydrocarbons (PAHs) and PAH mixtures in zebrafish (Danio rerio). Ecotoxicology, 20(6):1300-1314.

[8]Gauthier, P.T., Norwood, W.P., Prepas, E.E., et al., 2014. Metal-PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat. Toxicol., 154:253-269.

[9]Hao, L., Chen, L., Hao, J., et al., 2013. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf., 91:52-60.

[10]Hawliczek, A., Nota, B., Cenijn, P., et al., 2012. Developmental toxicity and endocrine disrupting potency of 4-azapyrene, benzo[b]fluorene and retene in the zebrafish Danio rerio. Reprod. Toxicol., 33(2):213-223.

[11]Huang, L., Zuo, Z., Zhang, Y., et al., 2014. Use of toxicogenomics to predict the potential toxic effect of benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. Chemosphere, 108:55-61.

[12]Janknegt, P.J., Rijstenbil, J.W., van de Poll, W.H., et al., 2007. A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J. Photochem. Photobiol. B, 87(3):218-226.

[13]Keenan, H.E., Bangkedphol, S., Sakultantimetha, A., et al., 2010. The ecological complexity of the Thai-Laos mekong river: II. Metals and polyaromatic hydrocarbons (PAHs) monitoring, modelling and environmental fate. J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng., 45(13):1674-1680.

[14]Kennedy, C.J., Tierney, K.B., Mittelstadt, M., 2014. Inhibition of p-glycoprotein in the blood-brain barrier alters avermectin neurotoxicity and swimming performance in rainbow trout. Aquat. Toxicol., 146:176-185.

[15]Koenig, S., Fernandez, P., Sole, M., 2012. Differences in cytochrome p450 enzyme activities between fish and crustacea: relationship with the bioaccumulation patterns of polychlorobiphenyls (PCBs). Aquat. Toxicol., 108:11-17.

[16]Konishi, T., Matsumoto, S., Tsuruwaka, Y., et al., 2006. Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase. J. Biotechnol., 122(3):316-325.

[17]Long, Y., Li, Q., Cui, Z., 2011a. Molecular analysis and heavy metal detoxification of ABCC1/MRP1 in zebrafish. Mol. Biol. Rep., 38(3):1703-1711.

[18]Long, Y., Li, Q., Li, J., et al., 2011b. Molecular analysis, developmental function and heavy metal-induced expression of ABCC5 in zebrafish. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 158(1):46-55.

[19]Long, Y., Li, Q., Wang, Y., et al., 2011c. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 153(3):310-317.

[20]Maria, V.L., Bebianno, M.J., 2011. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 154(1):56-63.

[21]Matović, V., Buha, A., Bulat, Z., et al., 2011. Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Arch. Ind. Hyg. Toxicol., 62(1):65-76.

[22]Meinelt, T., Playle, R.C., Pietrock, M., et al., 2001. Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances. Aquat. Toxicol., 54(3-4):205-215.

[23]Nakashima, T., Jinnin, M., Yamane, K., et al., 2012. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J. Immunol., 188(8):3573-3583.

[24]Navarro, A., Weissbach, S., Faria, M., et al., 2012. ABCB and ABCC transporter homologs are expressed and active in larvae and adults of zebra mussel and induced by chemical stress. Aquat. Toxicol., 122-123:144-152.

[25]Notch, E.G., Miniutti, D.M., Berry, J.P., et al., 2011. Cyanobacterial LPS potentiates cadmium toxicity in zebrafish (Danio rerio) embryos. Environ. Toxicol., 26(5):498-505.

[26]Osterauer, R., Fassbender, C., Braunbeck, T., et al., 2011. Genotoxicity of platinum in embryos of zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis). Sci. Total Environ., 409(11):2114-2119.

[27]Sassi, A., Darias, M.J., Said, K., et al., 2013. Cadmium exposure affects the expression of genes involved in skeletogenesis and stress response in gilthead sea bream larvae. Fish Physiol. Biochem., 39(3):649-659.

[28]Shi, X., Du, Y., Lam, P.K., et al., 2008. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol. Appl. Pharmacol., 230(1):23-32.

[29]Singh, D., Keshker, G., Jangde, A.K., 2008. Study of water quality parameters and Pb and Cd concentration distribution in the Hasdeo River in Korba (India). J. Environ. Res. Dev., 3(1):185-190.

[30]Souid, G., Souayed, N., Yaktiti, F., et al., 2013. Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol. Environ. Saf., 89:1-7.

[31]Terry, P.A., Stone, W., 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47(3):249-255.

[32]Tilton, F., Tanguay, R.L., 2008. Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuing neuronal and muscular dysfunction. Toxicol. Sci., 106(1):103-112.

[33]Timme-Laragy, A.R., Cockman, C.J., Matson, C.W., et al., 2007. Synergistic induction of AHR regulated genes in developmental toxicity from co-exposure to two model PAHs in zebrafish. Aquat. Toxicol., 85(4):241-250.

[34]Udomchoke, V., Sunthornranun, P., Songsasen, A., et al., 2010. The ecological complexity of the Thai-Laos Mekong River: I. Geology, seasonal variation and human impact assessment on river quality. J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng., 45(13):1661-1673.

[35]Vergauwen, L., Hagenaars, A., Blust, R., et al., 2013. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquat. Toxicol., 126:52-62.

[36]Walker, J.M., 1994. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol., 32:5-8.

[37]Wang, L., Gallagher, E.P., 2013. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicol. Appl. Pharmacol., 266(2):177-186.

[38]Weil, M., Scholz, S., Zimmer, M., et al., 2009. Gene expression analysis in zebrafish embryos: a potential approach to predict effect concentrations in the fish early life stage test. Environ. Toxicol. Chem., 28(9):1970-1978.

[39]Wiegand, C., Pflugmacher, S., Oberemm, A., et al., 1999. Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ. Toxicol., 14(1):89-95.

[40]Wills, L.P., Zhu, S., Willett, K.L., et al., 2009. Effect of CYP1A inhibition on the biotransformation of benzo[a]pyrene in two populations of Fundulus heteroclitus with different exposure histories. Aquat. Toxicol., 92(3):195-201.

[41]Yang, S., Xie, J., Li, Q., 2012. Oxidative response and antioxidative mechanism in germinating soybean seeds exposed to cadmium. Int. J. Environ. Res. Public Health, 9(12):2827-2838.

[42]Yu, K.N., Tung, M.M., Choi, V.W., et al., 2012. Alpha radiation exposure decreases apoptotic cells in zebrafish embryos subsequently exposed to the chemical stressor, Cd. Environ. Sci. Pollut. Res. Int., 19(9):3831-3839.

[43]Zhang, Z., Huang, J., Yu, G., et al., 2004. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ. Pollut., 130(2):249-261.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B1400091

CLC number:

Q89

Download Full Text:

Click Here

Downloaded:

2958

Download summary:

<Click Here> 

Downloaded:

1991

Clicked:

6983

Cited:

7

On-line Access:

2014-06-03

Received:

2014-04-03

Revision Accepted:

2014-07-23

Crosschecked:

2014-08-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE