Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE B

ISSN 1673-1581(Print), 1862-1783(Online), Monthly

Sialyltransferase ST3GAL6 silencing reduces α2,3-sialylated glycans to regulate autophagy by decreasing HSPB8-BAG3 in the brain with hepatic encephalopathy

Abstract: End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia’s regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 β‍-galactoside α2,‍3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein β8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.

Key words: Hepatic encephalopathy; Hyperammonemia; Autophagy; ST3 β-galactoside α2,3-sialyltransferase 6 (ST3GAL6); Heat shock protein β8 (HSPB8)

Chinese Summary  <1> 唾液酸糖基转移酶ST3GAL6的沉默可通过减少α2,3-唾液酸化聚糖降低HSPB8-BAG3表达从而调控肝性脑病小鼠大脑中的自噬

李小承1,肖雅清1,李鹏飞3,朱雅昀1,郭永红4,边惠洁2,李铮1
1西北大学生命科学学院功能糖组学实验室,中国西安市,710069
2第四军医大学细胞生物学教研室&国家分子医学转化中心,中国西安市,710032
3陕西中医药大学医学实验中心,中国咸阳市,712046
4上海市浦东新区公利医院传染病科,中国上海市,200135
摘要:肝性脑病(HE)是肝病(如乙型肝炎引起的肝硬化和肝癌)发展到终末期之后的一个常见的并发症,氨中毒被认为是其主要的发病机制之一。氨与自噬密切相关,但其对HE的自噬调节作用的分子机制尚不清楚。唾液酸化是糖基化的一种重要形式。在神经系统中,异常的唾液酸化会影响各种生理过程,例如神经发育和突触形成。ST3 β-半乳糖苷α2,3-唾液酸转移酶6(ST3GAL6)是一种重要的糖基转移酶,负责将α2,3-连接的唾液酸添加到底物并生成聚糖结构。在本研究中,我们发现经氨诱导后,HE小鼠大脑和星形胶质细胞中ST3GAL6的表达上调,并且在氨诱导的星形胶质细胞中,α2,3-唾液酸化聚糖和自噬相关蛋白微管相关蛋白轻链3(LC3)和Beclin-1的表达均上调。上述结果表明:ST3GAL6与HE中的自噬有关。因此,本研究将进一步确定ST3GAL6与自噬之间的调控关系。我们发现通过沉默ST3GAL6以及通过怀槐凝集素-II(MAL-II)和神经氨酸酶阻断或降解α2,3-唾液酸化聚糖可以抑制自噬。此外,沉默ST3GAL6的表达可以下调热休克蛋白β8(HSPB8)和Bcl2关联永生基因3(BAG3)的表达。值得注意的是,HSPB8的过表达可部分恢复因ST3GAL6表达沉默而导致的自噬水平降低。综上,我们的结果表明了ST3GAL6可通过HSPB8-BAG3复合物调节自噬。

关键词组:肝性脑病;高氨血症;自噬;ST3 β-半乳糖苷α2,3-唾液酸转移酶6(ST3GAL6);热休克蛋白β8(HSPB8)


Share this article to: More

Go to Contents

References:

<HIDE>

[1]AbdullahML,Al-ShabanahO,HassanZK,et al.,2021.Eugenol-induced autophagy and apoptosis in breast cancer cells via PI3K/AKT/FOXO3a pathway inhibition.Int J Mol Sci,22(17):9243.

[2]BaoT,KarimN,KeHH,et al.,2023.Polysaccharide isolated from wax apple suppresses ethyl carbamate-induced oxidative damage in human hepatocytes.J Zhejiang Univ-Sci B (Biomed & Biotechnol),24(7):574-586.

[3]BarmakiH,NourazarianA,Khaki-KhatibiF,2023.Proteostasis and neurodegeneration: a closer look at autophagy in Alzheimer’s disease.Front Aging Neurosci,15:1281338.

[4]BowlesWHD,GlosterTM,2021.Sialidase and sialyltransferase inhibitors: targeting pathogenicity and disease.Front Mol Biosci,8:705133.

[5]ChierichettiM,CerretaniM,CiammaichellaA,et al.,2023.Identification of HSPB8 modulators counteracting misfolded protein accumulation in neurodegenerative diseases.Life Sci,322:121323.

[6]DaiH,HuWJ,ZhangLY,et al.,2021.FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K‒Akt‒mTOR signaling pathway. Cell Death Dis,12(4):303.

[7]DalangoodS,ZhuZ,MaZH,et al.,2020.Identification of glycogene-type and validation of ST3GAL6 as a biomarker predicts clinical outcome and cancer cell invasion in urinary bladder cancer.Theranostics,10(22):‍10078-10091.

[8]FallahzadehMA,RahimiRS,2022.Hepatic encephalopathy: current and emerging treatment modalities.Clin Gastroenterol Hepatol,20(S8):S9-S19.

[9]FilipponeA,EspositoE,ManninoD,et al.,2022.The contribution of altered neuronal autophagy to neurodegeneration.Pharmacol Ther,238:108178.

[10]FriedmanJ,2011.Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Göbel HH (Eds.),Oxidative Stress and Free Radical Damage in Neurology.Springer, Totowa, p.19-27.

[11]HuJL,ShanYJ,MaJ,et al.,2019.LncRNA ST3Gal6‐AS1/ST3Gal6 axis mediates colorectal cancer progression by regulating α‍‐‍2,‍3 sialylation via PI3K/Akt signaling.Int J Cancer,145(2):450-460.

[12]HuangJJ,BaiYM,XieWT,et al.,2023.Lycium barbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.J Zhejiang Univ-Sci B (Biomed & Biotechnol),24(2):157-171.

[13]HuangJM,HuangJM,ZhangGN,2022.Insights into the role of sialylation in cancer metastasis, immunity, and therapeutic opportunity.Cancers,14(23):5840.

[14]Kim CH,2020.Sialyltransferase,sialylation, andsulfoylation. In: Kim CH (Ed.), Ganglioside Biochemistry.Springer,Singapore, p.35-53.

[15]KwonY,HaamCE,ByeonS,et al.,2022.Effects of 3-methyladenine, an autophagy inhibitor, on the elevated blood pressure and arterial dysfunction of angiotensin II-induced hypertensive mice.Biomed Pharmacother,154:113588.

[16]LawrenceJM,SchardienK,WigdahlB,et al.,2023.Roles of neuropathology-associated reactive astrocytes: a systematic review.Acta Neuropathol Commun,11:42.

[17]LiFJ,DingJJ,2019.Sialylation is involved in cell fate decision during development, reprogramming and cancer progression.Protein Cell,10(8):550-565.

[18]LiHS,YouLK,XieJS,et al.,2017.The roles of subcellularly located EGFR in autophagy.Cell Signal,35:223-230.

[19]LiJX,LongYM,SunJY,et al.,2022.Comprehensive landscape of the ST3GAL family reveals the significance of ST3GAL6-AS1/ST3GAL6 axis on EGFR signaling in lung adenocarcinoma cell invasion.Front Cell Dev Biol,10:931132.

[20]LinH,KorenSA,CvetojevicG,et al.,2022.The role of BAG3 in health and disease: a “Magic BAG of Tricks”.J Cell Biochem,123(1):4-21.

[21]LuKH,ZimmermannM,GörgB,et al.,2019.Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes.eBioMedicine,48:539-553.

[22]MareninovaOA,JiaWZ,GretlerSR,et al.,2020.Transgenic expression of GFP-LC3 perturbs autophagy in exocrine pancreas and acute pancreatitis responses in mice.Autophagy,16(11):2084-2097.

[23]Ochoa-SanchezR,TamnanlooF,RoseCF,2021.Hepatic encephalopathy: from metabolic to neurodegenerative.Neurochem Res,46(10):2612-2625.

[24]ParkH,KangJH,LeeS,2020.Autophagy in neurodegenerative diseases: a hunter for aggregates.Int J Mol Sci,21(9):3369.

[25]PekerN,GozuacikD,2020.Autophagy as a cellular stress response mechanism in the nervous system.J Mol Biol,432(8):2560-2588.

[26]QiF,IsajiT,DuanCW,et al.,2020.ST3GAL3, ST3GAL4, and ST3GAL6 differ in their regulation of biological functions via the specificities for the α2,‍3‍‐‍sialylation of target proteins. FASEB J,34(1):881-897.

[27]RoseCF,AmodioP,BajajJS,et al.,2020.Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy.J Hepatol,73(6):1526-1547.

[28]SeidelK,VinetJ,den DunnenWFA,et al.,2012.The HSPB8‐BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.Neuropathol Appl Neurobiol,38(1):39-53.

[29]SepehrinezhadA,ZarifkarA,NamvarG,et al.,2020.Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema.Metab Brain Dis,35(4):‍559-578.

[30]ShenY,MalikSA,AmirM,et al.,2020.Decreased hepatocyte autophagy leads to synergistic IL‐1β and TNF mouse liver injury and inflammation.Hepatology,72(2):595-608.

[31]SiddiquiSS,MatarR,MerhebM,et al.,2019.Siglecs in brain function and neurological disorders.Cells,8(10):1125.

[32]SoriaLR,Brunetti-PierriN,2019.Ammonia and autophagy: an emerging relationship with implications for disorders with hyperammonemia.J Inherit Metab Dis,42(6):1097-1104.

[33]SunMM,ZhaoXZ,LiangLL,et al.,2017.Sialyltransferase ST3GAL6 mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway.Cancer Sci,108(2):267-276.

[34]TangHY,HuangHY,WangD,et al.,2022.TFEB ameliorates autophagy flux disturbance induced by PBDE-47 via up-regulating autophagy-lysosome fusion.J Hazard Mater,430:128483.

[35]TogawaJ,OhiT,YuanJH,et al.,2019.Atypical familial amyotrophic lateral sclerosis with slowly progressing lower extremities-predominant late-onset muscular weakness and atrophy.Intern Med,58(13):1851-1858.

[36]UenoT,KomatsuM,2020.Monitoring autophagy flux and activity: principles and applications.BioEssays,42(11):2000122.

[37]VishwakarmaJ,GuptaK,MishraJ,et al.,2023.Hypothyroidism induces motor deficit via altered cerebellar HB-EGF/EGFR and autophagy.J Endocrinol,257(1):e220338.

[38]XuK,HeYZ,MoqbelSAA,et al.,2021.SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway.Int J Biol Macromol,175:351-360.

[39]YangKK,YangZF,ChenXF,et al.,2021.The significance of sialylation on the pathogenesis of Alzheimer’s disease.Brain Res Bull,173:116-123.

[40]ZhangX,DongZ,FanH,et al.,2023.Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-‍κB pathways. J Zhejiang Univ-Sci B (Biomed & Biotechnol),24(7):617-631.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.B2300917

CLC number:

Download Full Text:

Click Here

Downloaded:

412

Download summary:

<Click Here> 

Downloaded:

17

Clicked:

321

Cited:

0

On-line Access:

2024-06-24

Received:

2023-12-17

Revision Accepted:

2024-02-20

Crosschecked:

2024-06-24

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE