Publishing Service

Polishing & Checking

Journal of Zhejiang University SCIENCE C

ISSN 1869-1951(Print), 1869-196x(Online), Monthly

A regeneratable dynamic differential evolution algorithm for neural networks with integer weights

Abstract: Neural networks with integer weights are more suited for embedded systems and hardware implementations than those with real weights. However, many learning algorithms, which have been proposed for training neural networks with float weights, are inefficient and difficult to train for neural networks with integer weights. In this paper, a novel regeneratable dynamic differential evolution algorithm (RDDE) is presented. This algorithm is efficient for training networks with integer weights. In comparison with the conventional differential evolution algorithm (DE), RDDE has introduced three new strategies: (1) A regeneratable strategy is introduced to ensure further evolution, when all the individuals are the same after several iterations such that they cannot evolve further. In other words, there is an escape from the local minima. (2) A dynamic strategy is designed to speed up convergence and simplify the algorithm by updating its population dynamically. (3) A local greedy strategy is introduced to improve local searching ability when the population approaches the global optimal solution. In comparison with other gradient based algorithms, RDDE does not need the gradient information, which has been the main obstacle for training networks with integer weights. The experiment results show that RDDE can train integer-weight networks more efficiently.

Key words: Differential evolution, Integer weights, Neural networks, Greedy, Embedded systems, Function approximation


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/jzus.C1000137

CLC number:

TP183

Download Full Text:

Click Here

Downloaded:

2625

Clicked:

7346

Cited:

4

On-line Access:

2010-12-09

Received:

2010-05-05

Revision Accepted:

2010-07-23

Crosschecked:

2010-10-15

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE