|
Journal of Zhejiang University SCIENCE C
ISSN 1869-1951(Print), 1869-196x(Online), Monthly
2014 Vol.15 No.7 P.551-563
Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal
Abstract: We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.
Key words: Fuzzy c-means clustering, Kernel method, Global optimization, Consonant/vowel segmentation
An erratum to this article can be found at doi:10.1631/jzus.C13e0320
研究手段:使用KFCM-F处理数据,在不显著影响实验结果的情况下,设计了一个加速计划以降低计算复杂度。采用非线性人工数据组和现实数据组作为语音信号,进行辅音/元音分割,以检测这种新算法的性能。
重要结论:KFCM-F方法巧妙地避免了传统FCM方法的两个缺点。我们设计的算法(FGKFCM-F)继承了KFCM-F和全局模糊c均值方法(GFCM)的优点,得以实现基于非线性分割数据组的近乎最优解。此外,我们设计的加速计划大大降低了整个计算的复杂度。实验结果证实,FGKFCM-F比其他方法更适合处理人工和现实数据。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/jzus.C1300320
CLC number:
TN912; TP391.4
Download Full Text:
Downloaded:
3235
Download summary:
<Click Here>Downloaded:
2327Clicked:
14018
Cited:
6
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2014-06-19