Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Design of an enhanced visual odometry by building and matching compressive panoramic landmarks online

Abstract: Efficient and precise localization is a prerequisite for the intelligent navigation of mobile robots. Traditional visual localization systems, such as visual odometry (VO) and simultaneous localization and mapping (SLAM), suffer from two shortcomings: a drift problem caused by accumulated localization error, and erroneous motion estimation due to illumination variation and moving objects. In this paper, we propose an enhanced VO by introducing a panoramic camera into the traditional stereo-only VO system. Benefiting from the 360° field of view, the panoramic camera is responsible for three tasks: (1) detecting road junctions and building a landmark library online; (2) correcting the robot’s position when the landmarks are revisited with any orientation; (3) working as a panoramic compass when the stereo VO cannot provide reliable positioning results. To use the large-sized panoramic images efficiently, the concept of compressed sensing is introduced into the solution and an adaptive compressive feature is presented. Combined with our previous two-stage local binocular bundle adjustment (TLBBA) stereo VO, the new system can obtain reliable positioning results in quasi-real time. Experimental results of challenging long-range tests show that our enhanced VO is much more accurate and robust than the traditional VO, thanks to the compressive panoramic landmarks built online.

Key words: Visual odometry, Panoramic landmark, Landmark matching, Compressed sensing, Adaptive compressive feature

Chinese Summary  <31> 基于在线建立与匹配压缩全景路标的增强型视觉里程计

目的:高效精确定位是移动机器人智能导航的先决条件。传统视觉定位系统,如视觉里程计(VO)和同时定位与三维重建(SLAM)算法,存在两点不足:一是由累积定位误差引起的漂移问题,二是由光照变化和移动物体导致的错误运动估计结果。
创新:通过引入全景相机到传统双目VO系统,提出一种增强型VO,高效利用全景相机360˚视场角信息。(1)在线建立路口场景压缩全景路标库;(2)机器人以任意方向重新访问路标时,对定位结果进行全局校正;(3)当双目立体VO不能提供可靠定位信息时对航向角估计结果进行校正;(4)为高效利用信息量较多的全景图像,引入压缩感知概念并提出一种自适应压缩特征。
方法:首先,在压缩亮度特征基础上,增加压缩SURF特征提高其描述能力,通过分析特征区分度,使压缩特征可以根据具体图像特点自适应调节,最终构建自适应压缩特征(ACF,图2),该特征计算速度快(表3)、描述能力强(图6、7,表1),有效提高全景图像信息利用效率。然后,使用ACF对全景路标图像进行描述,提出一种任意方向的路标图像匹配算法,若当前全景图像与路标图像匹配成功,则对当前定位结果进行全局位姿校正(图4),抑制大范围环境中定位路径漂移问题(图10、11)。最后,介绍基于图像片匹配的航向角鲁棒估计方法,当双目视觉里程计因特征跟踪质量差而导致运动估计结果不稳定时,对局部运动估计结果进行校正,提高运动估计的精度(图9)。
结论:提出的增强型视觉里程计系统可以准实时提供可靠定位结果,极大抑制大范围挑战性环境中传统VO漂移问题和运动估计错误问题。实验结果显示,所提算法大幅度提高传统VO的准确性和鲁棒性。

关键词组:视觉里程计;全景路标;路标匹配;压缩感知;自适应压缩特征


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1400139

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

3220

Download summary:

<Click Here> 

Downloaded:

2254

Clicked:

7954

Cited:

2

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2015-01-06

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE