Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Abstract: We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker nodes, given significant performance heterogeneity in nodes and processing skews in the workload.

Key words: Kd tree, Quad tree, Space partitioning, Spatial indexing, Range queries, Query optimization

Chinese Summary  <36> 不确定空间二维范围查询的Kd-树和四叉树分解

目的:通过点数据二维范围查询性能测试评价空间划分方法(kd-树和四叉树)的可行性和有效性。
创新:基于不确定空间创建有效索引,将范围查询分解成多个等尺寸子范围求解。
方法:将数据集合定义为二维平面上的点,进行范围查询(窗口查询)。根据数据大小(相对大或相对小)及其分布(随机或偏斜)测试四种方案(图3-8)。相同的测试同时应用于真实数据(Turkey’s points of interest data,图9-11)。
结论:所提算法有助选取由索引表格创建的最佳划分组合,最小化给定查询响应时间。四叉树索引平行度更高,这很大程度上由于四叉树更清晰地揭示数据空间位置。

关键词组:Kd-树;四叉树;空间划分;空间索引;范围查询;查询优化


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1400165

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

2986

Download summary:

<Click Here> 

Downloaded:

1817

Clicked:

7191

Cited:

4

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2015-01-05

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE