|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2015 Vol.16 No.7 P.568-578
Using heterogeneous patent network features to rank and discover influential inventors
Abstract: Most classic network entity sorting algorithms are implemented in a homogeneous network, and they are not applicable to a heterogeneous network. Registered patent history data denotes the innovations and the achievements in different research fields. In this paper, we present an iteration algorithm called inventor-ranking, to sort the influences of patent inventors in heterogeneous networks constructed based on their patent data. This approach is a flexible rule-based method, making full use of the features of network topology. We sort the inventors and patents by a set of rules, and the algorithm iterates continuously until it meets a certain convergence condition. We also give a detailed analysis of influential inventor’s interesting topics using a latent Dirichlet allocation (LDA) model. Compared with the traditional methods such as PageRank, our approach takes full advantage of the information in the heterogeneous network, including the relationship between inventors and the relationship between the inventor and the patent. Experimental results show that our method can effectively identify the inventors with high influence in patent data, and that it converges faster than PageRank.
Key words: Heterogeneous patent network, Influence, Rule-based ranking
创新点:传统对发明人员进行分析的方法是对发明人的专利数量进行统计分析,但这种方法不够全面。本文提出的基于规则的方法,设计结合网络拓扑结构和专利数据特点,排序过程不断迭代直至符合收敛条件。与传统方法相比,该方法充分利用异构网络中的信息。实验结果表明本算法不仅能有效挖掘具有高影响力的发明人员,而且收敛速度更快、效率更高。
方法:不同于传统的排序方法,本文提出的Inventor-Ranking排序算法是一种基于规则的实体排序方法。该方法通过迭代使用这些规则得到排序结果。排序模型建立在发明人员和专利的相互影响进行排序的基础上(图3)。使用本算法和PageRank算法排序Top 10的发明人员(表2)。实验结果表明,Inventor-Ranking算法比PageRank算法收敛更快(图10)。
结论:本文针对专利数据组成的异构网络,提出异构网络中实体的排序算法。制定了用于影响力排序的规则集合并进行迭代求解。同时,利用LDA主题模型实现发明人实体的兴趣分布与发现。在真实专利数据集上的实验表明,本文提出的算法具有较好的性能与灵活性。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1400394
CLC number:
TP391
Download Full Text:
Downloaded:
4204
Download summary:
<Click Here>Downloaded:
2170Clicked:
9003
Cited:
5
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-06-23