|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2015 Vol.16 No.5 P.380-390
HAPE3D—a new constructive algorithm for the 3D irregular packing problem
Abstract: We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good performance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing quality.
Key words: 3D packing problem, Layout design, Simulation, Optimization, Constructive algorithm, Meta-heuristics
创新点:提出的新型不规则排样构造算法HAPE3D无需计算临界多面体(NFP),并允许零件灵活旋转。
方法:首先,用最小势能原理解释三维不规则排样问题中零件的运动机理(图5)。然后,提出HAPE3D三个重要技术环节:(1)三维体的分离判据(图6);(2)点在三维体内的判据(图7);(3)多面体靠接算法(图8、9)。接着,给出HAPE3D的算法流程。最后通过两个算例检验算法可行性。
结论:HAPE3D是一种非常可靠的三维不规则排样算法。它区别于其它同类算法的最大特点是无需计算NFP,并在保持零件原有面貌(不需要将零件分解为多个长方体)的基础上允许零件旋转。HAPE3D可方便地与其它启发式算法(比如SA)结合形成混合启发式算法,从而进一步提高排样效率,其计算速度还有很大改进空间。
关键词组:
Recommended Papers Related to this topic:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1400421
CLC number:
TP391.7
Download Full Text:
Downloaded:
3800
Download summary:
<Click Here>Downloaded:
2501Clicked:
9245
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-04-10