|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2016 Vol.17 No.1 P.41-54
Extracting hand articulations from monocular depth images using curvature scale space descriptors
Abstract: We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.
Key words: Curvature scale space (CSS), Hand articulation, Convex hull, Hand contour
创新点:提出改进的曲率尺度空间特征描述符,从手形轮廓提取手指的指尖点、指谷点;通过角度区域与手形轮廓及手部深度差异计算未检测的四指指尖;通过五个指根点以及手形轮廓的起始点构成的七边形计算未检测的大拇指指尖。
方法:通过openNI对单幅深度图像提取手部部分并提取手形轮廓点。将传统的曲率尺度空间特征描述符改进为适当阈值范围内的特征点提取算法,从手形轮廓提取手指的指尖点、指谷点;对未检测的指尖点通过角度阈值进行弯曲判断,通过角度区域与手形轮廓及手部深度差异逐一计算未检测的手部特征点。
结论:与传统的基于角度阈值、轮廓凸包等方法相比,改进的曲率尺度空间特征描述鲁棒性更佳,适合从手部轮廓中提取手部的指尖点和指谷点。在此基础上通过角度区域、手形轮廓及手部深度差等方法可逐一计算未检测的手部特征点。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1500126
CLC number:
TP391; TP751
Download Full Text:
Downloaded:
5424
Download summary:
<Click Here>Downloaded:
1894Clicked:
7373
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2015-12-09