|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2016 Vol.17 No.6 P.501-515
ARAP++: an extension of the local/global approach to mesh parameterization
Abstract: Mesh parameterization is one of the fundamental operations in computer graphics (CG) and computer-aided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for single- and multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area) of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such as texture mapping and surface remeshing.
Key words: Mesh parameterization, Convex combination weights, Stretch operator, Jacobian matrix
创新点:首先通过优化弹性能量函数推导得到了一类局部/全局线性迭代格式,并阐明该方法与ARAP方法之间的联系。针对保面积的情况,提出了一种快速得到最佳拟合矩阵的方法。最后为提高算法的鲁棒性,对ARAP++方法进行改进,使其可以很好的处理高曲率网格的展平,尽可能防止参数化结果的网格重叠。
方法:ARAP++是一种线性迭代的参数化方法。本文首先将原始网格初始化展平到平面上,然后对初始化网格进行迭代计算。其中每次迭代主要分为两个阶段:(1)局部优化;(2)整体求解。实验证明本文算法收敛迅速,并且可以得到很好的纹理映射和重网格化结果。
结论:本文提出了一种自由边界的网格参数化方法,该方法可以使用不同的凸组合权值得到相应性质的参数化结果(图10),也可以通过改变Jacobian矩阵的奇异值来达到保角、保面积、保刚性的目的(图3)。本文方法针对不同的网格模型也可以通过拉伸算子来协调参数化后角度、面积以及拉伸扭曲之间的关系(图9),从而使得该方法在纹理映射(图13、14)和重网格化(图15)等应用中得到较好的视觉效果。
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1500184
CLC number:
TP391
Download Full Text:
Downloaded:
3114
Download summary:
<Click Here>Downloaded:
2084Clicked:
7592
Cited:
3
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2016-05-06