|
Frontiers of Information Technology & Electronic Engineering
ISSN 2095-9184 (print), ISSN 2095-9230 (online)
2017 Vol.18 No.11 P.1795-1805
Laplacian sparse dictionary learning for image classification based on sparse representation
Abstract: Sparse representation is a mathematical model for data representation that has proved to be a powerful tool for solving problems in various fields such as pattern recognition, machine learning, and computer vision. As one of the building blocks of the sparse representation method, dictionary learning plays an important role in the minimization of the reconstruction error between the original signal and its sparse representation in the space of the learned dictionary. Although using training samples directly as dictionary bases can achieve good performance, the main drawback of this method is that it may result in a very large and inefficient dictionary due to noisy training instances. To obtain a smaller and more representative dictionary, in this paper, we propose an approach called Laplacian sparse dictionary (LSD) learning. Our method is based on manifold learning and double sparsity. We incorporate the Laplacian weighted graph in the sparse representation model and impose the l1-norm sparsity on the dictionary. An LSD is a sparse overcomplete dictionary that can preserve the intrinsic structure of the data and learn a smaller dictionary for each class. The learned LSD can be easily integrated into a classification framework based on sparse representation. We compare the proposed method with other methods using three benchmark-controlled face image databases, Extended Yale B, ORL, and AR, and one uncontrolled person image dataset, i-LIDS-MA. Results show the advantages of the proposed LSD algorithm over state-of-the-art sparse representation based classification methods.
Key words: Sparse representation; Laplacian regularizer; Dictionary learning; Double sparsity; Manifold
关键词组:
References:
Open peer comments: Debate/Discuss/Question/Opinion
<1>
DOI:
10.1631/FITEE.1600039
CLC number:
TP39
Download Full Text:
Downloaded:
3036
Download summary:
<Click Here>Downloaded:
1937Clicked:
8385
Cited:
0
On-line Access:
2024-08-27
Received:
2023-10-17
Revision Accepted:
2024-05-08
Crosschecked:
2017-11-20