Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Spontaneous versus posed smile recognition via region-specific texture descriptor and geometric facial dynamics

Abstract: As a typical biometric cue with great diversities, smile is a fairly influential signal in social interaction, which reveals the emotional feeling and inner state of a person. Spontaneous and posed smiles initiated by different brain systems have differences in both morphology and dynamics. Distinguishing the two types of smiles remains challenging as discriminative subtle changes need to be captured, which are also uneasily observed by human eyes. Most previous related works about spontaneous versus posed smile recognition concentrate on extracting geometric features while appearance features are not fully used, leading to the loss of texture information. In this paper, we propose a region-specific texture descriptor to represent local pattern changes of different facial regions and compensate for limitations of geometric features. The temporal phase of each facial region is divided by calculating the intensity of the corresponding facial region rather than the intensity of only the mouth region. A mid-level fusion strategy of support vector machine is employed to combine the two feature types. Experimental results show that both our proposed appearance representation and its combination with geometry-based facial dynamics achieve favorable performances on four baseline databases: BBC, SPOS, MMI, and UvA-NEMO.

Key words: Facial landmark localization, Geometric feature, Appearance feature, Smile recognition

Chinese Summary  <32> 基于特定区域纹理描述和面部动态变化的自发性微笑判别技术

概要:微笑作为一种典型的生物多样性特征信号,在社会交往中有较大影响力,它揭示了人的情感感受和内心状态。自发性的微笑与假笑由不同大脑系统发出,在形态学和动力学上均存在差异。区分这两种类型的微笑仍具有挑战性,因为其中细微差别很难被肉眼观察到,仍有待被识别捕捉。已有相关研究大多是提取自发性微笑的几何特征,而外观特征并没有被充分利用,导致纹理信息的丢失。本文提出一种基于特定区域纹理描述来表示不同面部区域的局部模式变化,从而弥补几何特征研究的局限性。每个面部区域的时间相位是通过计算相应的面部区域强度来划分,而非仅考虑嘴巴区域强度。同时利用支持向量机的中层融合策略,将两种特征类型结合起来。实验结果表明,本文提出的外观表示法及其与基于几何形状的人脸动力学的结合技术,在BBC、SPOS、MMI和UvA-NEMO四个基准数据库中得到很好的应用。

关键词组:面部特征定位;几何特征;外貌特征;笑容识别


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1600041

CLC number:

TP37

Download Full Text:

Click Here

Downloaded:

2627

Clicked:

7746

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-06-03

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE