Publishing Service

Polishing & Checking

Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184 (print), ISSN 2095-9230 (online)

Tandem hidden Markov models using deep belief networks for offline handwriting recognition

Abstract: Unconstrained offline handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offline handwriting recognition. In the proposed model, deep belief networks are adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (an Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs tandem approaches.

Key words: Handwriting recognition, Hidden Markov models, Deep learning, Deep belief networks, Tandem approach

Chinese Summary  <390> 融合深度置信网络的串联隐马尔科夫模型及其在脱机手写识别中的应用

概要:在文档分析和模式识别领域,自由书写的脱机手写识别是一个非常具有挑战性的研究课题。近年来,为了充分探索隐藏在文档图像中的监督信息,许多研究工作试图将多层感知机以一种混合或串联的形式嵌入隐马尔科夫模型当中。然而,因为多层感知机学习能力的不足,学习到的特征对于后续的识别任务不一定是最优的。在本文中,我们针对自由书写的脱机手写识别提出一种基于深度结构的串联方法。在提出的模型中,深度置信网络被用于学习序列数据的紧致表示,隐马尔科夫模型被用于(子-)词的识别。我们在两个公开的数据集上验证了所提出的模型,这两个数据集是分别基于拉丁和阿拉伯语的RIMES和IFN/ENIT;我们还在Devanagari数据集上验证了所提出的模型,这个数据集是基于印度语的。大量的实验展示了所提出模型的优势,特别是相对于多层感知机-隐马尔科夫模型的串联方法。

关键词组:手写识别;隐马尔科夫模型;深度学习;深度置信网络;串联方法


Share this article to: More

Go to Contents

References:

<Show All>

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





DOI:

10.1631/FITEE.1600996

CLC number:

TP391

Download Full Text:

Click Here

Downloaded:

5850

Clicked:

12150

Cited:

0

On-line Access:

2024-08-27

Received:

2023-10-17

Revision Accepted:

2024-05-08

Crosschecked:

2017-06-16

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000~ Journal of Zhejiang University-SCIENCE